精英家教网 > 初中数学 > 题目详情
下列因式分解的结果正确的是(  )
分析:根据平方差公式和完全平方公式分别进行分解即可选出答案.
解答:解:A、a4-9b2=(a2-3b)(a2+3b),故此选项错误;
B、8x-4x2-4=-4(x2-2x+1)=-4(x-1)2,故此选项错误;
C、
1
4
x2+2xy-4y2=
1
4
(x2+8xy-16y2)=
1
4
(x-4y)2,故此选项错误;
D、4x2-
4
3
xy+
1
9
y2=(2x-
1
3
y)2,故此选项正确;
故选:D.
点评:此题主要考查了公式法分解因式,关键是掌握平方差公式:a2-b2=(a+b)(a-b);完全平方公式:a2±2ab+b2=(a±b)2
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

21、阅读下列因式分解的过程,再回答所提出的问题:
1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(1+x)]
=(1+x)2[1+x]
=(1+x)3
(1)上述分解因式的方法是
提取公因式
法,共应用了
3
次.
(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2010,则需要应用上述方法
2011
次,分解因式后的结果是
(1+x)2011

(3)请用以上的方法分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数),必须有简要的过程.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

29、阅读下列因式分解的过程,再回答所提出的问题:
1+x+x(x+1)+x(x+1)2
=(1+x)[1+x+x(x+1)]
=(1+x)2(1+x)
=(1+x)3
(1)上述分解因式的方法是
提公因式法
,共应用了
2
次.
(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2004,则需应用上述方法
2004
次,结果是
(1+x)2005

(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列因式分解的过程,再回答所提出的问题:
1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]
=(1+x)2(1+x)=(1+x)3
(1)上述因式分解得方法是
提取公因式
提取公因式
法,共应用了
2
2
次,
(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2012,则需要应用上述方法
2012
2012
次,分解因式后的结果是
(1+x)2013
(1+x)2013
.(3)请用以上的方法分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n,(其中n为正整数),必须有具体过程.
解:1+x+x(x+1)+x(x+1)2+…+x(x+1)n
=

查看答案和解析>>

科目:初中数学 来源:2013年初中数学单元提优测试卷-提公因式法(带解析) 题型:解答题

阅读下列因式分解的过程,再回答所提出的问题:
1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(1+x)]
=(1+x)2[1+x]
=(1+x)3
(1)上述分解因式的方法是  法,共应用了  次.
(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2010,则需要应用上述方法  次,分解因式后的结果是  
(3)请用以上的方法分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数),必须有简要的过程.

查看答案和解析>>

科目:初中数学 来源:2013年初中数学单元提优测试卷-提公因式法(解析版) 题型:解答题

阅读下列因式分解的过程,再回答所提出的问题:

1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(1+x)]

=(1+x)2[1+x]

=(1+x)3

(1)上述分解因式的方法是  法,共应用了  次.

(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2010,则需要应用上述方法  次,分解因式后的结果是  

(3)请用以上的方法分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数),必须有简要的过程.

 

查看答案和解析>>

同步练习册答案