【题目】如图,在四边形ABCD中,AD∥BC,AB=BC,对角线AC、BD交于点O,BD平分∠ABC,过点D作DE⊥BC,交BC的延长线于点E,连接OE.
(1)求证:四边形ABCD是菱形;
(2)若DC=2,AC=4,求OE的长.
【答案】(1)证明见解析;(2)4.
【解析】
(1)由AD∥BC,BD平分∠ABC,可得AD=AB,结合AD∥BC,可得四边形ABCD是平行四边形,进而,可证明四边形ABCD是菱形,
(2)由四边形ABCD是菱形,可得OC=AC=2,在Rt△OCD中,由勾股定理得:OD=4,根据“在直角三角形中,斜边上的中线等于斜边的一半”,即可求解.
(1)证明:∵AD∥BC,
∴∠ADB=∠CBD,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
∴∠ADB=∠ABD,
∴AD=AB,
∵AB=BC,
∴AD=BC,
∵AD∥BC,
∴四边形ABCD是平行四边形,
又∵AB=BC,
∴四边形ABCD是菱形;
(2)解:∵四边形ABCD是菱形,
∴AC⊥BD,OB=OD,OA=OC=AC=2,
在Rt△OCD中,由勾股定理得:OD==4,
∴BD=2OD=8,
∵DE⊥BC,
∴∠DEB=90°,
∵OB=OD,
∴OE=BD=4.
科目:初中数学 来源: 题型:
【题目】如图1为某教育网站一周内连续7天日访问总量的条形统计图,如图2为该网站本周学生日访问量占日访问总量的百分比统计图.
请你根据统计图提供的信息完成下列填空:
(1)这一周访问该网站一共有 万人次;
(2)周日学生访问该网站有 万人次;
(3)周六到周日学生访问该网站的日平均增长率为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线AB与轴交于点C,与双曲线
交于A(3,
)、B(-5,
)两点.AD⊥
轴于点D,BE∥
轴且与
轴交于点E.
(1)求点B的坐标及直线AB的解析式;
(2)判断四边形CBED的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,边长为2a的等边△ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是( )
A. B. aC.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c的图象经过点A(1,0).
(1)当b=2,c=﹣3时,求二次函数的解析式及二次函数最小值;
(2)二次函数的图象经过点B(m,e),C(3﹣m,e)且对任意实数x,函数值y都不小于﹣
.
①求此时二次函数的解析式;
②若次函数与y轴交于点D,在对称轴上存在一点P,使得PA+PD有最小值,求点P坐标及PA+PD的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图像经过
,
两点.
(1)求该函数的解析式;
(2)若该二次函数图像与轴交于
、
两点,求
的面积;
(3)若点在二次函数图像的对称轴上,当
周长最短时,求点
的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与
轴交于点
,直线
与
轴交于点
与
轴左侧抛物线交于点
,直线
与
轴右侧抛物线交于点
.
(1)求抛物线的解析式;
(2)点是直线
上方抛物线上一动点,求
面积的最大值;
(3)点是抛物线上一动点,点
是抛物线对称轴上一动点,请直接写出以点
为顶点的四边形是平行四边形时点
的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com