精英家教网 > 初中数学 > 题目详情
15.将一批数据分成5组,列出频率分布表,其中第一组与第五组的频率之和是0.26,第二与第四组的频率之和是0.55,那么第三组的频率是0.19.

分析 根据频率之和为1解答可得.

解答 解:第三组的频率是1-0.26-0.55=0.19,
故答案为:0.19.

点评 本题主要考查频数(频率)分布表,熟练掌握频数之和等于总数、频率之和为1是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.(1)计算:|$\sqrt{3}$-2|+20140-(-$\frac{1}{3}$)-1+3tan30°-$\root{3}{8}$ 
(2)x2-2x=2x+1(用配方法)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知M(1)=-2,M(2)=(-2)×(-2),M(3)=(-2)×(-2)×(-2),…,$\underset{\underbrace{M(n)=(-2)×(-2)×…(-2)}}{n个-2相乘}$.
(1)计算:M(5)+M(6)
(2)求2M(2016)+M(2017)的值.
(3)猜想2M(n)与M(n+1)的关系并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.已知反比例函数y=$\frac{k}{x}$的图象经过点(-3,4).
(1)常数k=-12,画出该函数在第四象限内的图象;
(2)当3<x<6时,-4<y<-2;当0<x<4时,y的取值范围是y<-3;当0<x<2时,y<-6;当-2<x<0时,y>6.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,一段抛物线:y=x(x-3)(0≤x≤3),记为C1,它与x轴交于点O,A,将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…,如此进行下去,直至得C673.若P(2017,a)在第673段抛物线C673上,则a=-2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.利用图形来表示数量或数量关系,也可以利用数量或数量关系来描述图形特征或图形之间的关系,这种思想方法称为数形结合.你能利用数形结合的思想解决下列问题吗?
(1)如图①,一个边长为1的正方形,依次取正方形面积的$\frac{1}{2}$、$\frac{1}{4}$、$\frac{1}{8}$、…、$\frac{1}{{2}^{n}}$,根据图示我们可以知道:$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{8}$+$\frac{1}{16}$+…+$\frac{1}{{2}^{n}}$=1-$\frac{1}{{2}^{n}}$.(用含有n的式子表示)
(2)如图②,一个边长为1的正方形,依次取剩余部分的$\frac{2}{3}$,根据图示:
计算:$\frac{2}{3}$+$\frac{2}{9}$+$\frac{2}{27}$+…+$\frac{2}{{3}^{n}}$=1-$\frac{1}{{3}^{n}}$.(用含有n的式子表示)
(3)如图③是一个边长为1的正方形,根据图示:
计算:$\frac{1}{3}$+$\frac{2}{9}$+$\frac{4}{27}$+$\frac{8}{81}$+…+$\frac{{2}^{n-1}}{{3}^{n}}$=1-$\frac{{2}^{n}}{{3}^{n}}$.(用含有n的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如果∠A的两边分别与∠B的两边平行,且∠A比∠B的3倍少40°,则这两个角的度数分别为20°,20°或125°,55°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.一个寻宝游戏的通道平面图如图1所示(正方形ABCD是⊙O的内接四边形),图中的所有线段和弧线都是通道.为了记录寻宝者的行进路线,相关人员在点O处放置了一台定位仪器.设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x之间的函数关系的图象如图2所示,则寻宝者的行进路线可能为…(  )
A.线段OA→劣弧AD→线段DOB.劣弧AD→线段DO→线段OC
C.劣弧AD→劣弧DC→线段COD.线段OB→劣弧BC→劣弧CD

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,将半径为3cm,圆心角为60°的扇形纸片.AOB在直线l上向右作无滑动的滚动至扇形A′O′B′处,则顶点O经过的路线总长4πcm(结果保留π).

查看答案和解析>>

同步练习册答案