如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC的大小是 .
45°
【解析】
试题分析:先利用AAS判定△BDF≌△ADC,从而得出BD=DA,即△ABD为等腰直角三角形.所以得出∠ABC=45°.
∵AD⊥BC于D,BE⊥AC于E
∴∠BEA=∠ADC=90°.
∵∠FBD+∠BFD=90°,∠AFE+∠FAE=90°,∠BFD=∠AFE
∴∠FBD=∠FAE
在△BDF和△ADC中
∴△BDF≌△ADC(AAS)
∴BD=AD
∴∠ABC=∠BAD=45°,
故填45°.
考点:此题主要考查了三角形全等的判定和性质,等腰直角三角形的判定和性质
点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com