先阅读下列因式分解的过程,再回答所提出的问题:
例1:1+ax+ax(1+ax)=(1+ax)(1+ax)
=(1+ax)2;
例2:1+ax+ax(1+ax)+ax(1+ax)2=(1+ax)(1+ax)+ax(1+ax)2
=(1+ax)2+ax(1+ax)2
=(1+ax)2(1+ax)
=(1+ax)3
(1)分解因式:1+ax+ax(1+ax)+ax(1+ax)2+…+ax(1+ax)n= (1+ax)n+1 ;
(2)分解因式:x﹣1﹣x(x﹣1)+x(x﹣1)2﹣x(x﹣1)3+…﹣x(x﹣1)2003+x(x﹣1)2004
(答题要求:请将第(1)问的答案填写在题中的横线上)
(1)(1+ax)n+1 (2)(x﹣1)2005
解析试题分析:首先把式子整理,可知是将一个多项式进行因式分解,考虑运用分组分解法.
(1)可以把1+ax分成一组,看作一个整体,反复利用提公因式法就可求解.
(2)可以把x﹣1分成一组,看作一个整体,反复利用提公因式法就可求解.
解:(1)1+ax+ax(1+ax)+ax(1+ax)2+…+ax(1+ax)n,
=(1+ax)(1+ax)+ax(1+ax)2+…+ax(1+ax)n,
=(1+ax)2+ax(1+ax)2+…+ax(1+ax)n,
=(1+ax)2(1+ax)+…+ax(1+ax)n,
=(1+ax)3+…+ax(1+ax)n,
=(1+ax)n(1+ax),
=(1+ax)n+1;
(2)x﹣1﹣x(x﹣1)+x(x﹣1)2﹣x(x﹣1)3+…﹣x(x﹣1)2003+x(x﹣1)2004,
=(x﹣1)(1﹣x)+x(x﹣1)2﹣x(x﹣1)3+…﹣x(x﹣1)2003+x(x﹣1)2004,
=(x﹣1)2(﹣1+x)2﹣x(x﹣1)3+…﹣x(x﹣1)2003+x(x﹣1)2004,
=(x﹣1)2(1﹣x)+…﹣x(x﹣1)2003+x(x﹣1)2004,
=(x﹣1)2005.
考点:因式分解-分组分解法.
点评:本题考查了分组分解法分解因式,关键是将原式转化为(x﹣1)n的形式,解题时要有构造意识和想象力.
科目:初中数学 来源: 题型:阅读理解
查看答案和解析>>
科目:初中数学 来源:2013年初中数学单元提优测试卷-分组法因式分解(解析版) 题型:解答题
先阅读下列因式分解的过程,再回答所提出的问题:
例1:1+ax+ax(1+ax)=(1+ax)(1+ax)
=(1+ax)2;
例2:1+ax+ax(1+ax)+ax(1+ax)2=(1+ax)(1+ax)+ax(1+ax)2
=(1+ax)2+ax(1+ax)2
=(1+ax)2(1+ax)
=(1+ax)3
(1)分解因式:1+ax+ax(1+ax)+ax(1+ax)2+…+ax(1+ax)n= (1+ax)n+1 ;
(2)分解因式:x﹣1﹣x(x﹣1)+x(x﹣1)2﹣x(x﹣1)3+…﹣x(x﹣1)2003+x(x﹣1)2004
(答题要求:请将第(1)问的答案填写在题中的横线上)
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源:期末题 题型:计算题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com