精英家教网 > 初中数学 > 题目详情
7.如图所示,∠C=∠C′=90°,AC=AC′,求证:∠CAB=∠C′AB(要求不用全等的知识证明).

分析 根据角平分线的判定定理得到∠CBA=∠C′BA,计算即可.

解答 证明:∵∠C=∠C′=90°,AC=AC′,
∴∠CBA=∠C′BA,
∴∠C-∠CAB=∠C′-∠C′AB
即∠CAB=∠C′AB

点评 本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.如图,一次函数y1=k1x+2与反比例函数y2=$\frac{{k}_{2}}{x}$的图象交于点A(4,m)和B(-8,-2),与y轴交于点C.
(1)k1=$\frac{1}{2}$,k2=16,当y1>y2时,x的取值范围是-8<x<0或x>4;
(2)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点,设直线OP与线段AD交于点E,当S四边形ODAC:S△ODE=3:1时,求点P的坐标;
(3)点M为直线AB上一动点,是否存在过点M的直线MN,使MN⊥AB,且与双曲线y=$\frac{{k}_{2}}{x}$只有一个公共点?若存在,请求出直线MN的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.阅读下列材料:
“共享单车”是指企业与政府合作,在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车共享的一种服务,是共享经济的一种新形态.共享单车的出现让更多的用户有了更好的代步选择.自行车也代替了一部分公共交通甚至打车的出行.
Quest Mobile监测的M型与O型单车从2016年10月--2017年1月的月度用户使用情况如表所示:

根据以上材料解答下列问题:
(1)仔细阅读上表,将O型单车总用户数用折线图表示出来,并在图中标明相应数据;
(2)根据图表所提提供的数据,选择你所感兴趣的方面,写出一条你发现的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知关于x的方程x2-2mx+m2+m-2=0有两个不相等的实数根.
(1)求m的取值范围;
(2)当m为正整数时,求方程的根.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图四边形ABCD是由四根长度相等的细木条首尾相接用钉子固定而成,可以转动改变形状,如图1所示,当∠B=90°时,AC=6;如图2所示,若∠BAD=60°时,AC=3$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算:
(1)(-3.4)+4.3                      
(2)(-81)-(-29)
(3)(-9)+4+(-5)+8             
(4)-5.4+0.2-0.6+0.8
(5)(-1)-$\frac{3}{5}$-(-$\frac{2}{7}$)+$\frac{3}{7}$+(-$\frac{2}{5}$)          
(6)4$\frac{3}{4}$+(+3.85)-(-3$\frac{1}{4}$)-(+3.85)
(7)-$\frac{2}{3}$-|-$\frac{3}{4}$|+(-$\frac{1}{3}$)-(-$\frac{1}{4}$); 
(8)(-1)+(+2)+(-3)+(+4)+…+(-99)+(+100)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.已知ax=ay,下列等式变形不一定成立的是(  )
A.b+ax=b+ayB.x=yC.x-ax=x-ayD.$\frac{ax}{{a}^{2}+1}$=$\frac{ay}{{a}^{2}+1}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.已知a1、a2、a3、a4是彼此不相等的负数,且M=(a1+a2+a3)(a2+a3+a4),N=(a1+a2+a3+a4)(a2+a3),那么M与N的大小关系是M>N.(填“>”,“<”或“=”)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.已知a给定的整数,记G(x)=a-x+|x-a|.若G(1)+G(2)+…+G(2015)+G(2016)=72,则a的值是(  )
A.7B.8C.9D.10

查看答案和解析>>

同步练习册答案