【题目】一艘快艇从A码头到B码头顺流行驶,同时一艘游船从B码头出发逆流行驶.已知,A、B两码头相距140千米,快艇在静水中的平均速度为67千米/小时,游船在静水中的平均速度为27千米/小时,水流速度为3千米/小时。
(1)请计算两船出发航行30分钟时相距多少千米?
(2)如果快艇到达B码头后立即返回,试求快艇在返回的过程中需航行多少时间两船恰好相距12千米?
【答案】(1)在航行30分钟时两船相距93千米;(2)快艇在返回的过程中需航行或小时两船恰好相距12千米.
【解析】试题分析:(1)分别求出快船顺流速度和游艇逆流速度,则两车30分钟后相距距离为开始总距离-快艇路程-游艇路程即可;(2)分两种情况讨论:①快艇返回时,两船未相遇,相距12千米;②快艇返回时,两船相遇后,相距12千米.
解:(1)140-(67+3)×-(27-3)×=93(千米).
即航行30分钟时两船相距93千米;
(2)设快艇在返回的过程中需航行x小时两船恰好相距12千米.
由快艇从A到达B码头时,用时140÷(67+3)=2(时),
此时游艇行驶2×(27-3)=48(千米).且返回时快艇速度为67-3=64(千米/时),
①快艇返回时,两船未相遇,相距12千米,
则48+24x-64x=12,解得x=.
②快艇返回时,两船相遇后,相距12千米.
则64x-(48+24x)=12,解得x=.
此时×64=96(千米),即快艇未到达A码头,符合题意.
答:快艇在返回的过程中需航行或小时两船恰好相距12千米.
科目:初中数学 来源: 题型:
【题目】认真阅读下面的材料,完成有关问题.
材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.
问题(1):点A、B、C在数轴上分别表示有理数﹣5、﹣1、3,那么A到B的距离是 ,
A到C的距离是 . (直接填最后结果).
问题(2):点A、B、C在数轴上分别表示有理数x、﹣2、1,那么A到B的距离与A到C的距离之和可表示为 (用含绝对值的式子表示).
问题(3):利用数轴探究:①找出满足|x﹣3|+|x+1|=6的x的所有值是 ;
②设|x﹣3|+|x+1|=p,当x的值取在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是 ;当x的值取在 的范围时,|x|+|x﹣2|的最小值是 .
问题(4):求|x﹣3|+|x﹣2|+|x+1|的最小值以及此时x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线与轴交于、两点,与轴交于点.
(1)请直接写出A、B、C三点的坐标:
A B C
(2)点P从点A出发,在线段AB上以每秒3个单位长度的速度向点B运动,同时点Q 从点B出发,在线段BC上以每秒1个单位长度的速度向点C运动.其中一个点到达终点时,另一个点也停止运动.设运动的时间为t(秒),
① 当t为何值时,BP=BQ?
② 是否存在某一时刻t,使△BPQ是直角三角形?若存在,请求出所有符合条件的t的值,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市在高架快速公路施工期间,交管部门在施工路段设立了矩形路况警示牌BCEF(如图所示),已知立杆AB的高度是3米,从侧面D点测到路况警示牌顶端C点和底端B点的仰角分别是60°和45°,求路况警示牌宽BC的值(结果保留根号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是( )
A. 30 B. 34 C. 36 D. 40
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请从以下两个小题中任选一个作答,若多选,则按第一题计分.
A.一个八边形的外角和是___度.
B.计划在楼层间修建一个坡角为35°的楼梯,若楼层间高度为2.7m,为了节省成本,现要将楼梯坡角增加11°,则楼梯的斜面长度约减少__m.(用科学计算器计算,结果精确到0.01m)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现定义运算:对于任意有理数a、b,都有ab=ab-b,如:23=2×3-3,请根据以上定义解答下列各题:
(1) 2(-3)=___________,x(-2)=___________;
(2) 化简:[(-x)3] (-2);
(3) 若x =3(-x),求x的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com