精英家教网 > 初中数学 > 题目详情
10、在平面直角坐标系中,直线l过点M(3,0),且平行于y轴.
(1)如果△ABC三个顶点的坐标分别是A(-2,0),B(-1,0),C(-1,2),△ABC关于y轴的对称图形是△A1B1C1,△A1B1C1关于直线l的对称图形是△A2B2C2,写出△A2B2C2的三个顶点的坐标;
(2)如果点P的坐标是(-a,0),其中a>0,点P关于y轴的对称点是P1,点P1关于直线l的对称点是P2,求PP2的长.
分析:(1)根据关于y轴对称点的坐标特点是横坐标互为相反数,纵坐标相同可以得到△A1B1C1各点坐标,又关于直线l的对称图形电的坐标特点是纵坐标相同,横坐标之和等于3的二倍,由此求出△A2B2C1的三个顶点的坐标;
(2)如图,如果0<a≤3,那么点P1在线段OM上.PP2=PP1+P1P2=2OP1+2P1M=2(OP1+P1M)=2OM=6.如果a>3,那么点P1在点M的右边.PP2=PP1-P1P2=2OP1-2P1M=2(OP1-P1M)=2OM=6.所以PP2的长是6.
解答:
解:(1)△A2B2C2的三个顶点的坐标分别是A2(4,0),B2(5,0),C2(5,2);(3分)

(2)如果0<a≤3,那么点P1在线段OM上,PP2=PP1+P1P2=2OP1+2P1M=2(OP1+P1M)=2OM=6;(5分)
如果a>3,那么点P1在点M的右边,PP2=PP1-P1P2=2OP1-2P1M=2(OP1-P1M)=2OM=6.
所以PP2的长是6.(7分)
点评:动手操作既是数学活动的一种形式,也是考查学生对概念理解与操作技能掌握情况的一种有效方式.本题设置了轴对称变化和点的坐标变化的有关问题,对于考查目标的实现具有很好的作用.题目的背景清晰、明快,设计自然、合理,尤其是第(2)小题设置的问题既具有一定的开放性又重点考查了分类的数学思想,使试题的考查有较高的效度.发挥了试题的整体效应:概念理解与操作技能掌握情况.本题一个考查学生“轴对称”与坐标的相关知识的试题,学生可以根据自己的理解选择自由发挥的空间,问题的解决为学生提供了自主探索的空间,考查了学生关于变换与坐标知识的综合运用能力.其解决的过程体现了数学内在的和谐美,体现了对学生“操作--发现--猜想”的能力的考查,注意了题目的可推广性,由学生解答本题的情况可以推及学生具有这些特质的情形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、在平面直角坐标系中,点P到x轴的距离为8,到y轴的距离为6,且点P在第二象限,则点P坐标为
(-6,8)

查看答案和解析>>

科目:初中数学 来源: 题型:

10、在平面直角坐标系中,点P1(a,-3)与点P2(4,b)关于y轴对称,则a+b=
-7

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,有A(2,3)、B(3,2)两点.
(1)请再添加一点C,求出图象经过A、B、C三点的函数关系式.
(2)反思第(1)小问,考虑有没有更简捷的解题策略?请说出你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,开口向下的抛物线与x轴交于A、B两点,D是抛物线的顶点,O为精英家教网坐标原点.A、B两点的横坐标分别是方程x2-4x-12=0的两根,且cos∠DAB=
2
2

(1)求抛物线的函数解析式;
(2)作AC⊥AD,AC交抛物线于点C,求点C的坐标及直线AC的函数解析式;
(3)在(2)的条件下,在x轴上方的抛物线上是否存在一点P,使△APC的面积最大?如果存在,请求出点P的坐标和△APC的最大面积;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在平面直角坐标系中,把一个图形先绕着原点顺时针旋转的角度为θ,再以原点为位似中心,相似比为k得到一个新的图形,我们把这个过程记为【θ,k】变换.例如,把图中的△ABC先绕着原点O顺时针旋转的角度为90°,再以原点为位似中心,相似比为2得到一个新的图形△A1B1C1,可以把这个过程记为【90°,2】变换.
(1)在图中画出所有符合要求的△A1B1C1
(2)若△OMN的顶点坐标分别为O(0,0)、M(2,4)、N(6,2),把△OMN经过【θ,k】变换后得到△O′M′N′,若点M的对应点M′的坐标为(-1,-2),则θ=
0°(或360°的整数倍)
,k=
2

查看答案和解析>>

同步练习册答案