精英家教网 > 初中数学 > 题目详情
精英家教网已知,如图:△ABC是等腰直角三角形,∠ABC=90°,AB=10,D为△ABC外一点,连接AD、BD,过D作DH⊥AB,垂足为H,交AC于E.
(1)若△ABD是等边三角形,求DE的长;
(2)若BD=AB,且tan∠HDB=
34
,求DE的长.
分析:(1)利用等边三角形的性质及勾股定理先计算出DH的长,再利用三角形的中位线可求出EH,则DE的长可求解;
(2)利用角的正切值解直角三角形可求得DH、BH、AH的值,又因为△ABC是等腰直角三角形,所以△AHE也是等腰直角三角形,则EH可求,DE可解.
解答:解:(1)∵△ABD是等边三角形,AB=10,
∴∠ADB=60°,AD=AB=10,
∵DH⊥AB,
∴AH=
1
2
AB=5,
∴DH=
AD2-AH2
=
102-52
=5
3

∵△ABC是等腰直角三角形,
∴∠CAB=45°,即∠AEH=45°,
∴△AEH是等腰直角三角形,
∴EH=AH=5,
∴DE=DH-EH=5
3
-5

精英家教网
(2)∵DH⊥AB,且tan∠HDB=
3
4

∴可设BH=3k,则DH=4k,
∴根据勾股定理得:DB=5k,
∵BD=AB=10,
∴5k=10解得:k=2,
∴DH=8,BH=6,AH=4,
又∵EH=AH=4,
∴DE=DH-EH=4.
点评:本题主要考查了等边三角形的性质,勾股定理,及等腰直角三角形的性质,范围较广.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案