精英家教网 > 初中数学 > 题目详情
已知:如图1,把矩形纸片ABCD折叠,使得顶点A与边DC上的动点P重合(P不与点D,C重合),MN为折痕,点M,N分别在边BC,AD上,连接AP,MP,AM,AP与MN相交于点F.⊙O过点M,C,P.
(1)请你在图1中作出⊙O(不写作法,保留作图痕迹);
(2)
AF
AN
AP
AD
是否相等?请你说明理由;
(3)随着点P的运动,若⊙O与AM相切于点M时,⊙O又与AD相切于点H.设AB为4,请你通过计算,画出这时的图形.(图2,3供参考)
精英家教网
分析:(1)以MP的中点为圆心,以
1
2
MP的长为半径作⊙O,则⊙O过M,P,C三点;
(2)解法1,假设两者相等,则根据相似三角形的性质得:MN∥DC,由∠D=90°,可得:MN⊥AD,又A与P关于点F对称,P与D不重合,与“过一点(A)只能作一条直线与已知直线(MN)垂直”矛盾,故假设不成立;解法2,由折叠的性质知:MN⊥AP,在Rt△AFN中,cos∠FAN=
AF
AN
,在Rt△ADP中,cos∠PAD=
AD
AP
,由∠FAN=∠PAD,可得:
AF
AN
=
AD
AP
,又P与D不重合,故
AD
AP
AP
AD
,可得:
AF
AN
AP
AD
是不相等;
(3)作辅助线连接HO并延长交BC于J,根据折叠的性质知:MN垂直平分AP,可得:AM=DM,AM为⊙O的切线,可得:∠AMD=∠CMP+∠AMB=90°,又∠BAM+∠AMB=90°,可得:∠CMP=∠BAM,∠B=∠C=90°,可证:△ABM≌△MCD,MC=AB,BM=CP,由AD为⊙O的切线,可得:OJ⊥AD,故:JH∥CP,△MOJ∽△MPC,设PD的长为x,则PC=AB-x,OJ=
1
2
PC,OH=AB-OJ可求出⊙O的半径,又MC=AB,故在Rt△MCP中,运用勾股定理可将PD的长求出.
解答:精英家教网解:
(1)如图:

(2)解法一:
AF
AN
AP
AD
不相等.
假设
AF
AN
=
AP
AD

则由相似三角形的性质,得MN∥DC,
∵∠D=90°
∴DC⊥AD
∴MN⊥AD
∵据题意得,A与P关于MN对称,
∴MN⊥AP
∵据题意,P与D不重合,
∴这与“过一点(A)只能作一条直线与已知直线(MN)垂直”矛盾,
∴假设不成立,
AF
AN
=
AP
AD
不成立;

解法二:
AF
AN
AP
AD
不相等.
理由如下:
∵P,A关于MN对称,
∴MN垂直平分AP
∴cos∠FAN=
AF
AN

∵∠D=90°
∴cos∠PAD=
AD
AP

∵∠FAN=∠PAD
AF
AN
=
AD
AP

∵P不与D重合,P在边DC上
∴AD≠AP
AD
AP
AP
AD

从而
AF
AN
AP
AD



(3)∵AM是⊙O的切线,
∴∠AMP=90°
∴∠CMP+∠AMB=90°
∵∠BAM+∠AMB=90°
∴∠CMP=∠BAM
∵MN垂直平分AP,
∴MA=MP
∵∠B=∠C=90°
∴△ABM≌△MCP
∴MC=AB=4
设PD=x,则CP=4-x
∴BM=PC=4-x
连接HO并延长交BC于J,精英家教网
∵AD是⊙O的切线
∴∠JHD=90°
∴HDCJ为矩形
∴OJ∥CP
∴△MOJ∽△MPC
∴OJ:CP=MO:MP=1:2
∴OJ=
1
2
(4-x)
OH=
1
2
MP=4-OJ=
1
2
(4+x)
∵MC2=MP2-CP2
∴(4+x)2-(4-x)2=16
解得:x=1,即PD=1,PC=3
∴BC=BM+MC=PC+AB=3+4=7.
点评:此题作为压轴题,综合考查切线的性质,三角形相似的判定与性质等知识.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图1,把矩形纸片ABCD折叠,使得顶点A与边DC上的动点P重合(P不与D、C重合)MN为折痕;点M、N分别在边BC、AD上,连接AP、MA、MP;设AP与MN相交于F.
(1)请你在图中用直尺和圆规作出线段MP的中点O.(保留作图痕迹,不写作法和证明)
(2)
AF
AN
AP
AD
是否相等?请说明你的理由.
(3)随着点P的运动,当PM与MA垂直时,若过O点作OH⊥AD与H,并有OH=
1
2
MP;设矩精英家教网形ABCD的边AB为4,试确定P点的位置(图2供分析参考用)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图1,把矩形纸片ABCD折叠,使得顶点A与边DC上的动点P重合(P不与D、C重合)MN为折痕;点M、N分别在边BC、AD上,连接AP、MA、MP;设AP与MN相交于F.
(1)请你在图中用直尺和圆规作出线段MP的中点O.(保留作图痕迹,不写作法和证明)
(2)数学公式数学公式是否相等?请说明你的理由.
(3)随着点P的运动,当PM与MA垂直时,若过O点作OH⊥AD与H,并有OH=数学公式MP;设矩形ABCD的边AB为4,试确定P点的位置(图2供分析参考用)

查看答案和解析>>

科目:初中数学 来源:第3章《圆》中考题集(39):3.2 点、直线与圆的位置关系,圆的切线(解析版) 题型:解答题

已知:如图1,把矩形纸片ABCD折叠,使得顶点A与边DC上的动点P重合(P不与点D,C重合),MN为折痕,点M,N分别在边BC,AD上,连接AP,MP,AM,AP与MN相交于点F.⊙O过点M,C,P.
(1)请你在图1中作出⊙O(不写作法,保留作图痕迹);
(2)是否相等?请你说明理由;
(3)随着点P的运动,若⊙O与AM相切于点M时,⊙O又与AD相切于点H.设AB为4,请你通过计算,画出这时的图形.(图2,3供参考)

查看答案和解析>>

科目:初中数学 来源:第26章《圆》中考题集(50):26.5 直线与圆的位置关系(解析版) 题型:解答题

已知:如图1,把矩形纸片ABCD折叠,使得顶点A与边DC上的动点P重合(P不与点D,C重合),MN为折痕,点M,N分别在边BC,AD上,连接AP,MP,AM,AP与MN相交于点F.⊙O过点M,C,P.
(1)请你在图1中作出⊙O(不写作法,保留作图痕迹);
(2)是否相等?请你说明理由;
(3)随着点P的运动,若⊙O与AM相切于点M时,⊙O又与AD相切于点H.设AB为4,请你通过计算,画出这时的图形.(图2,3供参考)

查看答案和解析>>

同步练习册答案