【题目】如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=3.
(1)求该抛物线的函数解析式.
(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD.OD交BC于点F,当S△COF:S△CDF=3:2时,求点D的坐标.
(3)如图2,点E的坐标为(0,),点P是抛物线上的点,连接EB,PB,PE形成的△PBE中,是否存在点P,使∠PBE或∠PEB等于2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.
【答案】(1)y=﹣x2+2x+3;(2)点D的坐标为(1,4)或(2,3);(3)点P坐标为:(,)或(,).
【解析】
(1)OB=OC=3,则:B(3,0),C(0,-3),把B、C坐标代入抛物线方程,解得抛物线方程为:y=-x2+2x+3;
(2)S△COF:S△CDF=3:2,则S△COF=S△COD,即:xD=xF,即可求解;
(3)分∠PBE或∠PEB等于2∠OBE两种情况分别求解即可.
(1)OB=OC=3,则:B(3,0),C(0,﹣3),
把B、C坐标代入抛物线方程,
解得抛物线方程为:y=﹣x2+2x+3;
(2)∵S△COF:S△CDF=3:2,
∴S△COF=S△COD,即:xD=xF,
设:F点横坐标为3t,则D点横坐标为5t,
点F在直线BC上,
而BC所在的直线方程为:y=﹣x+3,则F(3t,3﹣3t),
则:直线OF所在的直线方程为:y=x=x,
则点D(5t,5﹣5t),
把D点坐标代入①,解得:t=或,
则点D的坐标为(1,4)或(2,3);
(3)①如图所示,当∠PEB=2∠OBE=2α时,
过点E作∠PEB的平分线交x轴于G点,PE交x轴于H点,
则:∠PEQ=∠QEB=∠ABE=α,则∠HGE=2α,
设:GB=m,则:OG=3﹣m,GE=m,
在Rt△OGE中,由勾股定理得:EG2=OG2+OE2,
即:m2=(3﹣m)2+()2,解得:m=,
则:GE=,OG=,BE=,
∵∠PEQ=∠ABE=α,∠EHG=∠EHG,∴△HGE∽△HEB,
∴==,设:GH=x,HE=4x,
在Rt△OHE中,OH=OG﹣HG=﹣x,OE=,EH=4x,
由勾股定理解得:x=,则:OH=,H(,0),
把E、H两点坐标代入一次函数表达式,
解得EH所在直线的表达式为:y=x﹣,
将上式与①联立并解得:x=,
则点P(,);
②当∠PBE=2∠OBE时,则∠PBO=∠EBO,
BE所在直线的k值为,则BE所在直线的k值为﹣,
则:PB所在的直线方程为:y=﹣x+3,
将上式与①联立,解得:x=,(x=0已舍去),
则点P(,),
故:点P坐标为:(,)或(,).
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b(k≠0)的图象与反比例函数的图象相交于A(-1,m),B(n,-1)两点,直线AB与y轴交于C点,连接OB.
(1)求一次函数的表达式;
(2)在x轴上找一点P,连接BP,使△BOP的面积等于△BOC的面积的2倍,求满足条件的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC 中,AB 为半圆 O 的直径,AC、BC 分别交半圆 O 于点 E、D,且 BD=DE.
(1)求证:点 D 是 BC 的中点.
(2)若点 E 是 AC 的中点,判断△ABC 的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线C1:y=ax2+bx+1的顶点坐标为D(1,0)且经过点(0,1),将抛物线C1向右平移1个单位,向下平移1个单位得到抛物线C2,直线y=x+c,经过点D交y轴于点A,交抛物线C2于点B,抛物线C2的顶点为P.
(1)求抛物线C1的解析式;
(2)如图2,连结AP,过点B作BC⊥AP交AP的延长线于C,设点Q为抛物线上点P至点B之间的一动点,连结BQ并延长交AC于点F,
①当点Q运动到什么位置时,S△PBD×S△BCF=8?
②连接PQ并延长交BC于点E,试证明:FC(AC+EC)为定值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交A(﹣1,0),B两点,与y轴交于点C(0,3),抛物线的顶点为点E.
(1)求抛物线的解析式;
(2)经过B,C两点的直线交抛物线的对称轴于点D,点P为直线BC上方抛物线上的一个动点,当点P运动到点E时,求△PCD的面积;
(3)点N在抛物线对称轴上,点M在x轴上,是否存在这样的点M与点N,使以M,N,C,B为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标(不写求解过程);若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,二次函数的图象交坐标轴于 A(﹣1,0),B(4,0),C
(0,﹣4)三点,点 P 是直线 BC 下方抛物线上一动点.
(1) 求这个二次函数的解析式;
(2) 是否存在点 P,使△POC 是以 OC 为底边的等腰三角形?若存在,求出 P 点坐标;若不存在,请说明理由;
(3) 在抛物线上是否存在点 D(与点 A 不重合)使得 S△DBC=S△ABC,若存在,求出点 D的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com