精英家教网 > 初中数学 > 题目详情

【题目】在边长为正整数的△ABC中,AB=AC,且AB边上的中线CD将△ABC的周长分为1:2的两部分,则△ABC面积的最小值为(
A.
B.
C.
D.

【答案】C
【解析】解:设这个等腰三角形的腰为x,底为y,分为的两部分边长分别为n和2n,得
解得
∵2× (此时不能构成三角形,舍去)
∴取 ,其中n是3的倍数
∴三角形的面积S= × × = n2 , 对于S= n2= n2
当n>0时,S随着n的增大而增大,故当n=3时,S= 取最小.
故选:C.
【考点精析】认真审题,首先需要了解三角形的面积(三角形的面积=1/2×底×高),还要掌握三角形三边关系(三角形两边之和大于第三边;三角形两边之差小于第三边;不符合定理的三条线段,不能组成三角形的三边)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知直线ABCD相交于点O,在∠COB的内部作射线OE.

1)若∠AOC=36°COE=90°,求∠BOE的度数;

2)若∠COEEOBBOD=432,求∠AOE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题发现如图,已知:AB=AC,∠BAC=90°,直线m经过点A,过点BBD⊥mD, CE⊥mE.我们把这种常见图形定义为“K”字图.很容易得到线段DE、BD、CE之间的数量关系是 .

拓展探究:如图2,AB=AC,∠BAC=∠BDA=∠AEC,则线段DE、BD、CE之间的数量关系还成立吗?如果成立,请证明之.

解决问题:如图3,AB=AC,∠BAC=∠BDA=∠AEC=120°,点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,BD=2,CE=4,求△DEF的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:2tan60°﹣| ﹣2|﹣ +( 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“马航事件”的发生引起了我国政府的高度重视,迅速派出了舰船和飞机到相关海域进行搜寻.如图,在一次空中搜寻中,水平飞行的飞机观测得在点A俯角为30°方向的F点处有疑似飞机残骸的物体(该物体视为静止).为了便于观察,飞机继续向前飞行了800米到达B点,此时测得点F在点B俯角为45°的方向上,请你计算当飞机飞临F点的正上方点C时(点A、B、C在同一直线上),竖直高度CF约为多少米?(结果保留整数,参考数值: ≈1.7)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD∥BC,∠A=90°,EAB上的一点,且AD=BE,∠1=∠2.

(1)求证:△ADE≌△BEC;

(2)若AD=6,AB=14,请求出CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,AB=AC,∠BAC=120,AD⊥BC,且AD=AB.

(1)如图1,DE⊥AB,DF⊥AC,垂足分别为点E,F,求证:AE+AF=AD

(2)如图2,如果∠EDF=60,且∠EDF两边分别交边AB,AC于点E,F,那么线段AE,AF,AD之间有怎样的数量关系?并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.

(1)求证:BE=CD;

(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图1,点A为线段BC外一动点,且BC=a,AB=b,填空:当点A位于   时,线段AC的长取到最大值,则最大值为  ;(用含a、b的式子表示)

(2)如图2,若点A为线段BC外一动点,且BC=4,AB=2,分别以AB,AC为边,作等边和等边,连接CD,BE.

①图中与线段BE相等的线段是线段 ,并说明理由;

②直接写出线段BE长的最大值为

(3)如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值为 ,及此时点P的坐标为 (提示:等腰直角三角形的三边长a、b、c满足a:b:c=1:1:

查看答案和解析>>

同步练习册答案