精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,点A、B分别在x轴y轴的正半轴上,线段OA的长是不等式5x-4<3(x+2)的最大整数解,线段OB的长是一元二次方程x2-2x-3=0的一个根,将Rt△ABO沿BE折叠,使AB边落在OB边所在的y轴上,点A与点D重合.
(1)求OA、OB的长;
(2)求直线BE的解析式;
(3)在平面内是否存在点M,使B、O、E、M为顶点的四边形为平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
分析:(1)求出不等式的解集,求出OA,求出方程的解,得出OB;
(2)根据对折得出DE=AE,BD=AB=5,设OE=x,在Rt△OED中,由勾股定理得出方程22+x2=(4-x)2,求出x,得出E的坐标,设直线BE的解析式是y=kx+b,把B、E的坐标代入求出即可;
(3)分别以OB、BE、OE为对角线,得出符合条件的四边形有三个,根据B、E的坐标即可求出M的坐标.
解答:解:(1)∵5x-4<3(x+2),
5x-4<3x+6,
2x<10,
x<5,
∴OA=4,
∵x2-2x-3=0,
(x-3)(x+1)=0,
x-3=0,x+1=0,
x=3,x=-1,
∴OB=3,
答:OA=4,OB=3;

(2)在Rt△AOB中,OA=4,OB=3,由勾股定理得:AB=5,
∵OB=3,
∴B(0,3),
设OE=x,
∵将Rt△ABO沿BE折叠,使AB边落在OB边上,A与D重合,
∴DE=AE,BD=AB=5,
∴DE=AE=4-x,OD=5-3=2,
在Rt△OED中,由勾股定理得:22+x2=(4-x)2
解得:x=
3
2

即E的坐标是:(
3
2
,0).
设直线BE的解析式是y=kx+b,
∵把B、E的坐标代入得:
b=3
0=
3
2
k+b

解得:k=-2,b=3,
∴直线BE的解析式是y=-2x+3;

(3)如图所示:
在平面内存在点M,使B、O、E、M为顶点的四边形为平行四边形,点M的坐标是(-
3
2
,3)或(
3
2
,3)或(
3
2
,-3).
点评:本题考查了解一元一次不等式,解一元二次方程,勾股定理,平行四边形性质,折叠问题的应用,能综合运用性质进行推理和计算是解此题的关键,注意:用了方程思想和分类讨论思想.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案