精英家教网 > 初中数学 > 题目详情
1.矩形纸片ABCD中,AD=10,AB=a(5<a<10)
第1次操作:把该矩形的短边掀起,按图1那样折叠,使点B落在AD边上的B′处,折痕为AE,沿EB′剪下,剩下一个矩形B′ECD,此时ABEB′是正方形,B′D=10-a;
第二次操作:把矩形B′ECD的短边掀起,按图2那样折叠,使点E落在CD边上的E′处,折痕为CF,沿FE剪下,剩下一个矩形B′FE′D,此时E′D=(用含a的代数式表示)…
第n次操作后,剩下的矩形为正方形,则操作停止.
若n=3,则a=2或$\frac{15}{2}$.

分析 首先根据题意可得可知当10<a<20时,第一次操作后剩下的矩形的长为a,宽为10-a,第二次操作时正方形的边长为10-a,第二次操作以后剩下的矩形的两边分别为10-a,2a-10.然后分别从10-a>2a-10与10-a<2a-10去分析求解,即可求得答案.

解答 解:由题意可知当5<a<10时,第一次操作后剩下的矩形的长为a,宽为10-a,
所以第二次操作时剪下正方形的边长为10-a,第二次操作以后剩下的矩形的两边分别为10-a,2a-10;
∴E′D=2a-10;
此时,分两种情况:
①如果10-a>2a-10,即a<$\frac{20}{3}$,那么第三次操作时正方形的边长为2a-10.
则2a-10=(10-a)-(2a-10),解得a=6;
②如果10-a<2a-10,即a>$\frac{20}{3}$,那么第三次操作时正方形的边长为10-a.
则10-a=(2a-10)-(10-a),解得a=$\frac{15}{2}$.
∴当n=3时,a的值为2或$\frac{15}{2}$.
故答案为:2或$\frac{15}{2}$.

点评 此题考查了折叠的性质与矩形的性质.此题难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用,注意折叠中的对应关系.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

11.已知x、y为正数,且|x2-4|与$\sqrt{{y}^{2}-3}$互为相反数,如果以x、y的长为直角边作直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为(  )
A.5B.25C.7D.15

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.在半径为20的⊙O中,弦AB=32,点P在弦AB上,且OP=15,则AP=7或25.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.威立到小吃店买水饺,他身上带的钱恰好等于15粒虾仁水饺或20粒韭菜水饺的价钱,若威立先买了9粒虾仁水饺,则他身上剩下的钱恰好可买多少粒韭菜水饺(  )
A.6B.8C.9D.12

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.先化简,再求值:(a+b)2-2a(b+1)-a2b÷b,其中a=$\frac{1}{2}$,b=$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.【知识链接】
(1)有理化因式:两个含有根式的非零代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式.
例如:$\sqrt{2}$的有理化因式是$\sqrt{2}$;1-$\sqrt{{x}^{2}+2}$的有理化因式是1+$\sqrt{{x}^{2}+2}$.
(2)分母有理化:分母有理化又称“有理化分母”,也就是把分母中的根号化去.指的是如果代数式中分母有根号,那么通常将分子、分母同乘以分母的有理化因式,达到化去分母中根号的目的.如:
$\frac{1}{1+\sqrt{2}}$=$\frac{1×(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)}$=$\sqrt{2}$-1,$\frac{1}{\sqrt{3}+\sqrt{2}}$=$\frac{1×(\sqrt{3}-\sqrt{2})}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}$=$\sqrt{3}$-$\sqrt{2}$.
【知识理解】
(1)填空:2$\sqrt{x}$的有理化因式是$\sqrt{x}$;
(2)直接写出下列各式分母有理化的结果:
①$\frac{1}{\sqrt{7}+\sqrt{6}}$=$\sqrt{7}$-$\sqrt{6}$;②$\frac{1}{3\sqrt{2}+\sqrt{17}}$=3$\sqrt{2}$-$\sqrt{17}$.
【启发运用】
(3)计算:$\frac{1}{1+\sqrt{2}}$+$\frac{1}{\sqrt{3}+\sqrt{2}}$+$\frac{1}{2+\sqrt{3}}$+…+$\frac{1}{\sqrt{n+1}+\sqrt{n}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.完成下面的证明.
(1)如图(1),AB∥CD,CB∥DE.求证:∠B+∠D=180°.
证明:∵AB∥CD,
∴∠B=∠C①(两直线平行,内错角相等②);
∵CB∥DE,
∴∠C+∠D=180°(两直线平行,同旁内角互补③).
∴∠B+∠D=180°.
(2)如图(2),∠ABC=∠A′B′C′,BD,B′D′分别是∠ABC,∠A′B′C′的平分线.
求证∠1=∠2.
证明:∵BD,B′D′分别是∠ABC,∠A′B′C′的平分线,
∴∠1=$\frac{1}{2}$∠ABC,∠2=$\frac{1}{2}$∠A'B'C'④(⑤角平分线的定义).
又∠ABC=∠A′B′C′,
∴$\frac{1}{2}$∠ABC=$\frac{1}{2}$∠A′B′C′.
∴∠1=∠2(等量代换⑥).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.林甸某中学开展了一项为贫困学生助学活动,号召学生自愿捐款.已知七年级捐款总额为4800元,八年级捐款总额为5000元,八年级捐款人数比七年级多20人,而且两个年级人均捐款额恰好相等,求两个年级捐款总人数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.解不等式组$\left\{\begin{array}{l}{1-x>-2①}\\{2x+3≥x-1②}\end{array}\right.$
请结合题意填空,完成本题的解答.
(Ⅰ)解不等式①,得x<3;
(Ⅱ)解不等式②,得x≥-4;
(Ⅲ)把不等式①和②的解集在数轴上表示出来:
(Ⅳ)原不等式组的解集为-4≤x<3.

查看答案和解析>>

同步练习册答案