精英家教网 > 初中数学 > 题目详情
将矩形纸张ABCD四个角向内折起恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=5,EF=12,则矩形ABCD的面积为
A.30B.60C.120D.240
C

试题分析:根据折叠的性质可得∠HEF=∠EFG=∠FGH=∠GHE=90°,所以可判断四边形EHFG是矩形,再由矩形ABCD的面积等于矩形HEFG的面积的2倍,可得出答案.
由题意得,∠HEM=∠HEA,∠MEF=∠BEF,
则∠HEF=∠HEM+∠MEF∠AEB=90°,
同理可得:∠HEF=∠EFG=∠FGH=∠GHE=90°,
即可得四边形EHFG是矩形,其面积=EH×EF=5×12=60,
由折叠的性质可得:矩形ABCD的面积等于矩形HEFG的面积的2倍=2×60=120,
故选C.
点评:解题的关键是判断四边形EHFG是矩形,得出矩形ABCD的面积等于矩形HEFG的面积的2倍.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连结DE,CF。

(1)求证:四边形CEDF是平行四边形;
(2)若AB=4,AD=6,∠B=60°,求DE的长。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在四边形ABCD中,AD∥BC,AD=CD,点E在DC的延长线上,AE交BC边于点F,且AE=AB.
 
(1)如图l,求证:∠B=∠E:
(2)如图2,在(1)的条件下,在BC上取一点M,使BM=CE,连接AM,过M作MH⊥AE于H,连接CH,若∠BAE=∠EHC=60°,CF=2,求线段AH的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,将长方形ABCD沿AE折叠,已知,则的大小是      

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在梯形ABCD中,,AB=DC。点E,F,G分别在边AB,BC,CD上,AE=GF=GC。

(1)求证:四边形AEFG是平行四边形;
(2)当时,求证:四边形AEFG是矩形。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,矩形ABCD中,AC与BD交于O点,AM∥BD,DM∥AC,AM、DM相交于点M,
求证:四边形AODM是菱形

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,矩形的边,它的两条对角线交于点,以为邻边作平行四边形,平行四边形的对角线交于点,同样以为邻边作平行四边形,……,依次类推,平行四边形的面积为           .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知如图,AD∥BC,∠ABC=90o,AB=BC,点E是AB上的点,∠ECD=45o,连接ED,过D作DF⊥BC于F.

(1)若∠BEC=75o,FC=4,求梯形ABCD的周长。(4分)
(2)求证:ED=BE+FC.(6分)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,△ABC为等边三角形,点D为直线BC上一动点(点D不与BC重合).以AD为边作菱形ADEF,使∠DAF=60°,连接CF

(1)如图1,当点D在边BC上时,
①求证:∠ADB=∠AFC;②请直接判断结论∠AFC=∠ACB+∠DAC是否成立;
(2)如图2,当点D在边BC的延长线上时,其他条件不变,结论∠AFC=∠ACB+∠DAC是否成立?若不成立,请写出∠AFC、∠ACB、∠DAC之间存在的数量关系,并写出证明过程;
(3)如图3,当点D在边CB的延长线上时,且点AF分别在直线BC的异侧,其他条件不变,请补全图形,并直接写出∠AFC、∠ACB、∠DAC之间存在的等量关系.

查看答案和解析>>

同步练习册答案