精英家教网 > 初中数学 > 题目详情
已知:如图,抛物线y=ax2+bx+c的顶点为C(1,0),且与直线l:y=x+m交y轴于同一点B(0,1),与直线l交于另一点A,D为抛物线的对称轴与直线l的交点,P为线段AB上的一动点(不与点A、B重合),过点P作y轴的平行线交抛物线于点E.
(1)求抛物线和直线l的函数解析式,及另一交点A的坐标;
(2)求△ABE的最大面积是多少?
(3)问是否存在这样的点P,使四边形PECD为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.
(1)∵抛物线y=ax2+bx+c的顶点为C(1,0),
∴设此抛物线的解析式为:y=a(x-1)2
∵点B(0,1)在此抛物线上,
∴a=1,
∴此抛物线的解析式为:y=(x-1)2=x2-2x+1;
∵直线l:y=x+m交y轴于点B(0,1),
∴1=0+m,
解得:m=1,
∴直线l的函数解析式为y=x+1;
联立得:
y=x2-2x+1
y=x+1

解得:
x=3
y=4
x=0
y=1

故点A的坐标为:(3,4);

(2)过点E作EG⊥y轴于点G,过点A作AF⊥EG于点F,
设E(x,x2-2x+1),
∴EG=x,EF=3-x,BG=1-(x2-2x+1)=-x2+2x,AF=4-(x2-2x+1)=-x2+2x+3,GF=3,
∴S△ABE=S梯形ABGF-S△BEG-S△AEF=
1
2
(BG+AF)•GF-
1
2
BG•EG-
1
2
EF•AF
=
1
2
×[(-x2+2x)+(-x2+2x+3)]×3-
1
2
×(-x2+2x)×x-
1
2
×(3-x)×(-x2+2x+3)
=-
-3x2+9x
2
=-
3
2
(x-
3
2
2+
27
8

∴当x=
3
2
时,S△ABE的最大值为:
27
8

∴△ABE的最大面积是
27
8


(3)存在.
∵PEy轴,CDy轴,
∴PECD,
∴当PE=CD时,四边形PECD为平行四边形,
∵点D在直线y=x+1上,且点D的横坐标为1,
∴点D(1,2),
∴CD=2,
设P(x,x+1),则点E(x,x2-2x+1),
∴PE=(x+1)-(x2-2x+1)=-x2+3x=2,
即x2-3x+2=0,
解得:x=1或x=2,
故点P的坐标为:(2,3).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx(a≠0)的顶点在直线y=-
1
2
x-1
上,且过点A(4,0).
(1)求这个抛物线的解析式;
(2)设抛物线的顶点为P,是否在抛物线上存在一点B,使四边形OPAB为梯形?若存在,求出点B的坐标;若不存在,请说明理由;
(3)设点C(1,-3),请在抛物线的对称轴确定一点D,使|AD-CD|的值最大,请直接写出点D的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知一次函数y=-
3
4
x+6
与坐标轴交于A、B点,AE是∠BAO的平分线,过点B作BE⊥AE,垂足为E,过E作x轴的垂线,垂足为M.
(1)求证:M为OB的中点;
(2)求以E为顶点,且经过点A的抛物线解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:抛物线y=ax2+bx+c经过原点(0,0)和A(1,-3),B(-1,5)两点.
(1)求抛物线的解析式;
(2)设抛物线与x轴的另一个交点为C,以OC为直径作⊙M,如果过抛物线上一点P作⊙M的切线PD,切点为D,且与y轴的正半轴交点为E,连接MD,已知E点的坐标为(0,m),求四边形EOMD的面积(用含m的代数式表示);
(3)延长DM交⊙M于点N,连接ON,OD,当点P在(2)的条件下运动到什么位置时,能使得四边形EOMD和△DON的面积相等,请求出此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某饮料经营部每天的固定成本为200元,其销售的饮料每瓶进价为5元.销售单价与日均销售量的关系如下:
售价单价(元)67891112
日均销售量(瓶)480440400360320240
(1)若记销售单价比每瓶进价多x元时,日均毛利润(毛利润=售价-进价-固定成本)为y元,求y关于x的函数解析式和自变量的取值范围;
(2)若要使日均毛利润达到最大,销售单价应定为多少元?最大日均毛利润为多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

方程
1
x
-2=x2-2x
实根的情况是(  )
A.有三个实根B.有两个实根C.有一个实根D.无实根

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

现有一块矩形场地,如图所示,长为40m,宽为30m,要将这块地划分为四块分别种植:A.兰花;B.菊花;C.月季;D.牵牛花.
(1)求出这块场地中种植B菊花的面积y与B场地的长x之间的函数关系式;求出此函数与x轴的交点坐标,并写出自变量的取值范围;
(2)当x是多少时,种植菊花的面积最大,最大面积是多少?请在格点图中画出此函数图象的草图(提示:找三点描出图象即可).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:函数y=-
1
4
x2+x+a的图象的最高点在x轴上.
(1)求a;
(2)如图所示,设二次函数y=-
1
4
x2+x+a图象与y轴的交点为A,顶点为B,P为图象上的一点,若以线段PB为直径的圆与直线AB相切于点B,求P点的坐标;
(3)在(2)中,若圆与x轴另一交点C关于直线PB的对称点为M,试探索点M是否在抛物线y=-
1
4
x2+x+a上?若在抛物线上,求出M点的坐标;若不在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,开口向上的抛物线y=ax2+bx+c与x轴交于点A(-6,0),另一个交点是B,与y轴的交点是C,且抛物线的顶点的纵坐标是-2,△AOC的面积为6
3

(1)求点B、C的坐标;
(2)求抛物线的解析式;
(3)M点从点A出发向点C以每秒
3
2
个单位匀速运动.同时点P以每秒2个单位的速度从A点出发,沿折线AB、BC向点C匀速运动,在运动的过程中,设△AMP的面积为y,运动的时间为x,求y与x的函数关系式及y的最大值;
(4)在运动的过程中,过点M作MNx轴交BC边于N,试问,在x轴上是否存在点Q,使△MNQ为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案