精英家教网 > 初中数学 > 题目详情
1.如图,已知△ABC的三个顶点的坐标分别为A(-6,0)、B(-2,3)、C(-1,0).
(1)将△ABC绕坐标原点O逆时针旋转90°.画出对应的△A′B′C′图形;
(2)若四边形A′B′C′D′为平行四边形,请直接写出第四个顶点D′的坐标.

分析 (1)利用旋转的性质得出对应点位置进而得出答案;
(2)利用平行四边形的性质得出D′点位置即可.

解答 解:(1)如图所示:△A′B′C′即为所求;

(2)如图所示:D′(3,-5).

点评 此题主要考查了旋转变换以及平行四边形的性质,根据题意得出对应点位置是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源:2016-2017学年福建省泉州市泉港区2016-2017学年八年级3月教学质量检测数学试卷(解析版) 题型:解答题

在直角坐标系中,△ABC的三个顶点的位置如图所示.

(1)请画出将△ABC先向右平移3个单位,再向上平移1个单位后得△A′B′C′,请在网格纸中画出△A′B′C′(其中A′,B′,C′分别是A,B,C的对应点,不写画法);

(2)直接写出A′、B′、C′三点的坐标:A′_____,B′______,C′______.

查看答案和解析>>

科目:初中数学 来源:2016-2017学年陕西省咸阳市七年级下学期第一次月考数学试卷(解析版) 题型:单选题

已知,则( )

A. B. C. D. 15

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,矩形ABCD中,对角线AC,BD交于点O,E,F分别是边BC,AD的中点,AB=3,BC=4,一动点P从点B出发,沿着B-A-D-C在矩形的边上运动,运动到点C停止,点M为图1中某一定点,设点P运动的路程为x,△BPM的面积为y,表示y与x的函数关系的图象大致如图2所示.则点M的位置可能是图1中的(  )
A.点CB.点FC.点DD.点O

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,网格中每个小正方形的边长均为1个单位长度
(1)画出与△ABC关于点O1对称的△A1B1C1(点A,B,C关于点O1的对称点分别为A1,B1,C1);
(2)画出△A1B1C1绕点O2逆时针旋转90°后的△A2B2C2(点A1,B1,C1的对应点分别为A2,B2,C2),点C1旋转到点C2所经过的路径长为$\sqrt{5}$π.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.2008年7月某地区遭受严重的自然灾害,空军某部队奉命赶灾区空投物资,已知空投物资离开飞机后在空中沿抛物线降落,抛物线顶点为机舱航口A,如图所示,如果空投物资离开A处后下落的垂直高度AB=160米时,它测A处的水平距离BC=200米,那么要使飞机在垂直高度AO=1000米的高空进行空投,物资恰好准确地落在居民点P处,飞机到P处的水平距离OP应为500米.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.在如图所示的平面直角坐标系中,△ABC的三个顶点分别为A(1,-1),B(2,-3),C(3,-2).
(1)将△ABC先绕原点O逆时针旋转90°,画出旋转后的△A′B′C′,再画出△A′B′C′关于原点O对称的△A″B″C″;
(2)求出点B到点B′所走过的路径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.对于两个已知图形G1、G2,在G1上任取一点P,在G2上任取一点Q,当线段PQ的长度最小时,我们称这个最小的长度为图形G1、G2的“密距”;当线段PQ的长度最大值时,我们称这个最大的长度为图形G1、G2的“疏距”.
请你在学习、理解上述定义的基础上,解决下面的问题;
在平面直角坐标系xOy中,点A的坐标为(-3,4),点B的坐标为(3,4),矩形ABCD的对称中心为点O.
(1)线段AD和BC的“密距”是6,“疏距”是10;
(2)设直线y=-$\frac{3}{4}$x+b(b>0)与x轴、y轴分别交于点E、F,若线段EF与矩形ABCD的“密距”是1,求它们的“疏距”;
(3)平面直角坐标系xOy中有一个四边形KLMN,将矩形ABCD绕点O旋转一周,在旋转过程中,它与四边形KLMN的“疏距”的最大值为4$\sqrt{2}$+2,旋转过程中,它与四边形KLMN的“密距”的取值范围是6-4$\sqrt{2}$≤密距≤8-4$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.今年某市遭遇干旱,为鼓励市民节约用水,该市自来水公司按分段收费标准收费,如图反映的是每月收水费y(元)与用水量x(吨)之间的函数关系.
(1)小聪家五月份用水5吨,应交水费11元;
(2)按上述分段收费标准,小聪家五月份交水费29元,问用水多少吨?

查看答案和解析>>

同步练习册答案