精英家教网 > 初中数学 > 题目详情
18.x取哪些整数值时,2≤3x-7≤8成立.

分析 解不等式组求得不等式组的解集,再找出不等式组的整数解即可.

解答 解:解不等式组$\left\{\begin{array}{l}3x-7≥2\\ 3x-7≤8\end{array}\right.\begin{array}{l}{\;}&①\\{\;}&②\end{array}$
解不等式①,得x≥3. 
解不等式②,得x≤5. 
∴不等式组的解集为3≤x≤5.        
∴x可取的整数值是3,4,5.

点评 此题考查了不等式组的解法,熟练运用不等式的性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

9.若两数之和小于0,且两数之积大于0,则这两个数(  )
A.都是正数B.都是负数
C.一正一负D.不能确定它们的符号

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如上图,把矩形ABCD沿EF对折,若∠1=36°,则∠AEF等于108°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.进位数是一种记数方式,可以用有限的数字符号代表所有的数值,使用数字符号的数目称为基数,基数为n,即可称n进制.现在最常用的是十进制,通常使用10个阿拉伯数字0~9进行记数,特点是逢十进一,对于任意一个用n(n≤10)进制表示的数,通常使用n个阿拉伯数字0~(n-1)进行记数,特点是逢n进一,我们可以通过以下方式把它转化为十进制:
例如:五进制数(234)5=2×52+3×5+4=69,记作(234)5=69,
七进制数(136)7=1×72+3×7+6=76,记作(136)7=76
(1)请将以下两个数转化为十进制:(331)5=91,(46)7=34
(2)若一个正数可以用七进制表示为($\overline{abc}$),也可以用五进制表示为$\overline{(cba)_{5}}$,请求出这个数并用十进制表示.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.对于任意实数,我们可以用 max{a,b},表示两数中较大的数.
(1)max{-1,-2}=-1;
(2)max{1,-x2+2x-1}( x为任意实数)=1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,在矩形ABCD中,AD=6,AB=4,点E、G、H、F分别在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,点M在线段DF上,点N在线段BG上,MN∥AB,点P线段MN上,连接PE、PF、PG、PH,则△PEF和△PGH的面积和等于7.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,在△ABC中,∠ACB=90°,AC=BC=2,O是BC的中点,P是射线AO上的一个动点,则当∠BPC=90°时,AP的长为$\sqrt{5}$-1或$\sqrt{5}$+1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.冬至过后,昼夜温差逐渐加大,山城的市民们已然感受到了深冬的寒意.在还未普遍使用地暖供暖设备的山城,小型电取暖器仍然深受市民的青睐.某格力专卖店销售壁挂式电暖器和卤素/石英式取暖器(俗称“小太阳”),其中壁挂式电暖器的售价是“小太阳”售价的5倍还多100元,2016年12月份壁挂式电暖器和“小太阳”共销售500台,壁挂式电暖器与“小太阳”销量之比是4:1,销售总收入为58.6万元.
(1)分别求出每台壁挂式电暖器和“小太阳”的售价;
(2)随着“元旦、春节”双节的来临和气温的回升,销售进入淡季,2017年1月份,壁挂式电暖器的售价比2016年12月下调了4m%,根据经验销售量将比2016年12月下滑6m%,而“小太阳”的销售量和售价都维持不变,预计销售总收入将下降到16.04万元,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.观察下列式子:
$\frac{1}{1×2}$=1-$\frac{1}{2}$,
$\frac{1}{2×3}$=$\frac{1}{2}$-$\frac{1}{3}$,
$\frac{1}{3×4}$=$\frac{1}{3}$-$\frac{1}{4}$…
将以上三个等式两边分别相加得:
$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$=1-$\frac{1}{4}$=$\frac{3}{4}$
用你发现是规律解答下列问题:
(1)①$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{2015×2016}$=$\frac{2015}{2016}$.
②$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{n(n+1)}$=$\frac{n}{n+1}$(其中n为大于1的自然数).
(2)探究并计算:
$\frac{1}{2×4}$+$\frac{1}{4×6}$+$\frac{1}{6×8}$+…+$\frac{1}{2014×2016}$.

查看答案和解析>>

同步练习册答案