精英家教网 > 初中数学 > 题目详情
23、已知:如图,在直角梯形ABCD中,AD∥BC,AB⊥AD,BC=CD,BE⊥CD,垂足为点E,点F在BD上,连接AF、EF.
(1)求证:AD=ED;
(2)如果AF∥CD,求证:四边形ADEF是菱形.
分析:(1)先根据平行的性质得到∠ADB=∠CDB,然后结合BC=CD利用ASA可证得△ABD≌△EBD,继而可得出结论;
(2)根据有一组邻边相等的平行四边形是菱形即可得出结论.
解答:证明:(1)∵BC=CD,
∴∠CDB=∠CBD,
∵AD∥BC,
∴∠ADB=∠CBD,
∴∠ADB=∠CDB,
又∵AB⊥AD,BE⊥CD,
∴∠BAD=∠BED=90°,
于是,在△ABD和△EBD中,
∵∠ADB=∠CDB,∠BAD=∠BED,BD=BD,
∴△ABD≌△EBD,
∴AD=ED.
(2)∵AF∥CD,∴∠AFD=∠EDF,
∴∠AFD=∠ADF,即得AF=AD,
又∵AD=ED,
∴AF=DE,于是,由AF∥DE,AF=DE得四边形ADEF是平行四边形,
又∵AD=ED,
∴四边形ADEF是菱形.
点评:本题考查直角梯形的知识,解答此题的关键是根据平行和直角三角形的性质找出图中的相似三角形,利用相似三角形的性质解答此题.
练习册系列答案
相关习题

科目:初中数学 来源:2011年河南省周口市初一下学期相交线与平行线专项训练 题型:解答题

如图,以Rt△ABO的直角顶点O为原点,OA所在的直线为x轴,OB所在的直线为y轴,建立平面直角坐标系.已知OA=4,OB=3,一动点P从O出发沿OA方向,以每秒1个

单位长度的速度向A点匀速运动,到达A点后立即以原速沿AO返回;点Q从A点出发

沿AB以每秒1个单位长度的速度向点B匀速运动.当Q到达B时,P、Q两点同时停止

运动,设P、Q运动的时间为t秒(t>0).

(1) 试求出△APQ的面积S与运动时间t之间的函数关系式;

(2) 在某一时刻将△APQ沿着PQ翻折,使得点A恰好落在AB边的点D处,如图①.

求出此时△APQ的面积.

(3) 在点P从O向A运动的过程中,在y轴上是否存在着点E使得四边形PQBE为等腰梯

形?若存在,求出点E的坐标;若不存在,请说明理由.

(4) 伴随着P、Q两点的运动,线段PQ的垂直平分线DF交PQ于点D,交折线QB-BO-OP于点F. 当DF经过原点O时,请直接写出t的值.

 

查看答案和解析>>

科目:初中数学 来源:2011年河南省周口市初一下学期平移专项训练 题型:解答题

如图,以Rt△ABO的直角顶点O为原点,OA所在的直线为x轴,OB所在的直线为y轴,建立平面直角坐标系.已知OA=4,OB=3,一动点P从O出发沿OA方向,以每秒1个

单位长度的速度向A点匀速运动,到达A点后立即以原速沿AO返回;点Q从A点出发

沿AB以每秒1个单位长度的速度向点B匀速运动.当Q到达B时,P、Q两点同时停止

运动,设P、Q运动的时间为t秒(t>0).

(1) 试求出△APQ的面积S与运动时间t之间的函数关系式;

(2) 在某一时刻将△APQ沿着PQ翻折,使得点A恰好落在AB边的点D处,如图①.

求出此时△APQ的面积.

(3) 在点P从O向A运动的过程中,在y轴上是否存在着点E使得四边形PQBE为等腰梯

形?若存在,求出点E的坐标;若不存在,请说明理由.

(4) 伴随着P、Q两点的运动,线段PQ的垂直平分线DF交PQ于点D,交折线QB-BO-OP于点F. 当DF经过原点O时,请直接写出t的值.

 

查看答案和解析>>

同步练习册答案