【题目】如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C旋转,使所得矩形A′B′CD′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为_____.
【答案】4
【解析】
连接OE,延长EO交CD于点G,作OH⊥B′C,由旋转性质知∠B′=∠B′CD′=90°、AB=CD=5、BC=B′C=4,从而得出四边形OEB′H和四边形EB′CG都是矩形且OE=OD=OC=2.5,继而求得CG=B′E=OH==2,根据垂径定理可得CF的长.
连接OE,延长EO交CD于点G,作OH⊥B′C于点H,
A′B′与⊙O相切,则∠OEB′=∠OHB′=90°,
∵矩形ABCD绕点C旋转所得矩形为A′B′C′D′,
∴∠B′=∠B′CD′=90°,AB=CD=5、BC=B′C=4,
∴四边形OEB′H和四边形EB′CG都是矩形,OE=OD=OC=2.5,
∴B′H=OE=2.5,
∴CH=B′C﹣B′H=1.5,
∴CG=B′E=OH==2,
∵四边形EB′CG是矩形,
∴∠OGC=90°,即OG⊥CD′,
∴CF=2CG=4,
故答案为:4.
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.
(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;
(2)在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;
(3)设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】苏果超市用5000元购进一批新品种的苹果进行试销,由于试销状况良好,超市又调拨11000元资金购进该种苹果,但这次的进价比试销时每千克多了0.5元,购进苹果的数量是试销时的2倍。
(1)试销时该品种苹果的进价是每千克多少元?
(2)如果超市将该品种的苹果按每千克7元定价出售,当大部分苹果售出后,余下的400千克按定价的七折售完,那么超市在这两次苹果销售中共盈利多少元?(7分)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知A1,A2,A3是抛物线y=x2+1(x>0)上的三点,且A1,A2,A3三点的横坐标为连续的整数,连接A1A3,过A2作A2Q⊥x轴于点Q,交A1A3于点P,则线段PA2的长为__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】以点P为端点竖直向下的一条射线PN,以它为对称轴向左右对称摆动形成了射线PN1,PN2,我们规定:∠N1PN2为点P的“摇摆角”,射线PN摇摆扫过的区域叫作点P的“摇摆区域”(含PN1,PN2).
在平面直角坐标系xOy中,点P(2,3).
(1)当点P的摇摆角为60°时,请判断O(0,0)、A(1,2)、B(2,1)、C(2+,0)属于点P的摇摆区域内的点是 (填写字母即可);
(2)如果过点D(1,0),点E(5,0)的线段完全在点P的摇摆区域内,那么点P的摇摆角至少为 °;
(3)⊙W的圆心坐标为(a,0),半径为1,如果⊙W上的所有点都在点P的摇摆角为60°时的摇摆区域内,求a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题情境:如图①,P是⊙O外的一点,直线PO分别交⊙O于点A、B,可以发现PA是点P到⊙O上的点的最短距离.
(1)直接运用:如图②,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是弧CD上的一个动点,连接AP,则AP的最小值是 .
(2)构造运用:如图③,在边长为8的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,请求出A′C长度的最小值.
(3)综合运用:如图④,平面直角坐标系中,分别以点A(﹣2,3),B(3,4)为圆心,分别以1、2为半径作⊙A、⊙B,M、N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值等于 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,按以下步骤作图:
①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;
②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;
③作AP射线,交边CD于点Q.
若QC=1,BC=3,则平行四边形ABCD周长为_____
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根据图中信息,解答下列问题:
(1)这项被调查的总人数是多少人?
(2)试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;
(3)如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关公,作为运城乃至山西的一张名片,吸引了来自世界各地的游客,在运城西南公里的常平村(关公故乡)南山上,有一尊巨型关公铜像,高米,象征关公享年岁,底座的高度也有一定寓意.有一位游客,对此产生了兴趣,想测量它的高度,由于游客无法直接到达铜像底部,因此该游客计划借助坡面高度来测量它的高度.如图,代表底座的高,坡顶与底座底部处在同一水平面上,该游客在斜坡底处测得该底座顶端的仰角为,然后他沿着坡度为的斜坡攀行了米,在坡顶处又测得该底座顶端的仰角为.求:
坡顶到地面的距离;
求底座的高度(结果精确到米).
(参考数据:,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com