D
分析:首先根据已知条件利用等腰直角三角形的性质以及相似三角形的判定与性质分别进行判断各结论是否正确.
解答:∵△ABC、△DCE都是等腰Rt△,
∴AB=AC=
BC=
,CD=DE=
CE;
∠B=∠ACB=∠DEC=∠DCE=45°;
①∵∠ACB=∠DCE=45°,
∴∠ACB-∠ACE=∠DCE-∠ACE;
即∠ECB=∠DCA;故①正确;
②∵∠AED+∠DEC+∠BEC=180°,∠DEC=45°,
∴∠AED+∠BEC=135°,
又∵∠BCE+∠BEC=180°-∠B=180°-45°=135°,
∴∠AED=∠BCE,故此选项正确;
③∵
=
=
,
∴
=
;
由①知∠ECB=∠DCA,
∴△BEC∽△ADC;
∴
=
,
∴BE≠AD,故此选项错误;
④∵△BEC∽△ADC;
∴∠DAC=∠B=45°;
∴∠DAC=∠BCA=45°,
即AD∥BC,故④正确;
⑤△ABC的面积为定值,若梯形ABCD的面积最大,则△ACD的面积最大;
△ACD中,AD边上的高为定值(即为1),若△ACD的面积最大,则AD的长最大;
由④的△BEC∽△ADC知:当AD最长时,BE也最长;
故梯形ABCD面积最大时,E、A重合,此时EC=AC=
,AD=1;
故S
梯形ABCD=
(1+2)×1=
,故⑤正确;
因此本题正确的结论是①②④⑤共4个,
故选:D.
点评:此题主要考查了等腰直角三角形的性质、平行线的判定、相似三角形的判定和性质、图形面积的求法等知识,综合性强,难度较大.