分析 (1)根据条件可先求得A点坐标,再根据中点,可求得C点坐标,然后根据待定系数法即可求得一次函数解析式及反比例函数的解析式;
(2)根据交点坐标和函数的图象即可求得.
解答 解:(1)∵OA=OB,点B的坐标为(0,2),
∴点A(-2,0),点A、B在一次函数y=kx+b(k≠0)的图象上,
∴$\left\{\begin{array}{l}{-2k+b=0}\\{b=2}\end{array}\right.$,解得k=1,b=2,
∴一次函数的解析式为y=x+2.
∵B是线段AC的中点,
∴点C的坐标为(2,4),
又∵点C在反比例函数y=$\frac{k}{x}$(k≠0)的图象上,
∴k=8
∴反比例函数的解析式为y=$\frac{8}{x}$.
(2)一次函数值大于反比例函数值的自变量x的取值范围-4<x<0或x>2.
点评 本题主要考查了待定系数法求反比例函数与一次函数的解析式.这里体现了数形结合的思想.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $5\sqrt{5}-5$ | B. | $5\sqrt{5}+1$ | C. | 10$\sqrt{5}$-20 | D. | $15-5\sqrt{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com