精英家教网 > 初中数学 > 题目详情

【题目】如图,在直角坐标系中,⊙O的半径为1,则直线y=﹣2x+ 与⊙O的位置关系是( )

A.相离
B.相交
C.相切
D.无法确定

【答案】C
【解析】解:如图所示,过O作OC⊥直线AB,垂足为C,

对应直线y=﹣2x+

令x=0,解得:y= ;令y=0,解得:x=

∴A( ,0),B(0, ),即OA= ,OB=

在Rt△AOB中,根据勾股定理得:AB= =

又SAOB= ABOC= OAOB,

∴OC= = =1,又圆O的半径为1,

则直线y=﹣2x+ 与圆O的位置关系是相切.

所以答案是:C

【考点精析】解答此题的关键在于理解切线的判定定理的相关知识,掌握切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公大楼顶端A测得旗杆顶端E的俯角α是45°,旗杆低端D到大楼前梯坎底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1: ,则大楼AB的高度为米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在等边ABC中,点EAB上的动点,点E与点AB不重合,点DCB的延长线上,且EC=ED

1)如图1,当BE=AE时,求证:BD=AE

2)当BE≠AE时,“BD=AE”能否成立?若不成立,请直接写出BDAE数理关系,若成立,请给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形 ABCD中,对角线 AC BD 相交于点 O,过点 A BD的垂线,垂足为 E.已知∠EAD=3BAE,求∠EAO 的度数( )

A.22B.67C.45°D.60°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD内有一点F,FBFC分别平分∠ABC和∠BCD,点E为矩形ABCD外一点,连接BE,CE.现添加下列条件:①EBCF,CEBF;BE=CE,BE=BF;BECF,CEBE;BE=CE,CEBF,其中能判定四边形BECF是正方形的共有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,两个半径相等的直角扇形的圆心分别在对方的圆弧上,半径AE,CF交于点G,半径BE,CD交于点H,且点C是 的中点,若扇形的半径为3,则图中阴影部分的面积等于

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用下列边长相同的正多边形组合,能够铺满地面不留缝隙的是()

A. 正八边形和正三角形 B. 正五边形和正八边形

C. 正六边形和正三角形 D. 正六边形和正五边形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市举行“建国70周年”征文比赛,已知每篇参赛征文成绩记m(60≤m≤100),组委会从1000篇征文随机抽取了部分参赛征文,统计了它们的成绩,并绘制了如下不完整的两幅统计图表.

请根指以上信息,解答下列问题

(1)征文比赛成绩频数分布表中,a= b= c=

(2)补全征文比赛成绩频数分布直方图;

(3)80分以上(80)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知⊙O的半径为2,AB为直径,CD为弦.AB与CD交于点M,将 沿着CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,链接PC.

(1)求CD的长;
(2)求证:PC是⊙O的切线;
(3)点G为 的中点,在PC延长线上有一动点Q,连接QG交AB于点E,交 于点F(F与B、C不重合).问GEGF是否为定值?如果是,求出该定值;如果不是,请说明理由.

查看答案和解析>>

同步练习册答案