【题目】如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.
(1)求∠ABC的度数;
(2)求证:AE是⊙O的切线;
(3)当BC=4时,求劣弧AC的长.
【答案】(1)∠ABC=60°;
(2)证明见解析;
(3)π.
【解析】试题分析:(1)∠ABC与∠D都是弧AC所对的圆周角,可得∠ABC=∠D=60°;
由AB是直径,可得∠ACB=90°,从而可得∠BAC=30°,由∠EAC=60°,可得∠EABC=90°,即AE是切线;
连接BC,由已知条件可知△BOC是等边三角形,从而可得弧AC所对圆心角的度数,利用弧长公式即可得劣弧AC的长.
试题解析:(1)∵∠ABC与∠D都是弧AC所对的圆周角,∴∠ABC=∠D=60°;
(2)∵AB是⊙O的直径,∴∠ACB=90°.∴∠BAC=30°,
∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,
∴AE是⊙O的切线;
(3)如图,连接OC,
∴OB=OC,∠ABC=60°,
∴△OBC是等边三角形,∵OB=BC=4,∠BOC=60°,
∴∠AOC=120°,
∴劣弧AC的长为=π.
科目:初中数学 来源: 题型:
【题目】请认真观察图形,解答下列问题:
(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简);并由此得到怎样的等量关系?请用等式表示;
(2)如果图中的a,b(a>b)满足a2+b2=53,ab=14,求:①a+b的值; ②a-b的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市出租车的起步价是5元(行驶不超过7km),以后每增加1km,加价1.5元,现在某人乘出租车行驶Pkm的路程(P>7,且P为整数)所需费用是( )元
A.5+1.5PB.1.5P-2.5C.5﹣1.5PD.1.5P﹣5.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小雨的爸爸从市场买回来四个大西瓜,爸爸为了考一考小雨,让小雨把四个大西瓜依次边上①,②,③,④号后,按质量由小到大的顺序排列出来(不准用称),小雨用一个简易天平操作,操作如下:(操作过程中,天平自身损坏忽略不计)
根据实验,小雨很快就把四个编好号的大西瓜的质量由小到大排列起来了.你认为小雨的实验于结果都是真实的吗?(即通过上述实验能找出它们质量的大小吗?)请说明你的理由,并与同学交流.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中, A(0,2),B(-1,0),Rt△AOC的面积为4.
(1)求点C的坐标;
(2)抛物线经过A、B、C三点,求抛物线的解析式和对称轴;
(3)设点P(m,n)是抛物线在第一象限部分上的点,△PAC的面积为S,求S关于m的函数关系式,并求使S最大时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,D是BC边上的一点,连接AD,取AD的中点E,过点A作BC的平行线与CE的延长线交于点F,连接DF.
(1)求证:AF=DC;
(2)若AD=CF,试判断四边形AFDC是什么样的四边形?并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com