精英家教网 > 初中数学 > 题目详情

【题目】已知AB=AC,D,EBC边上的点,ABD绕点A旋转,得到ACD',连接D'E.

(1)如图,BAC=120°,∠DAE=60°,求证DE=D'E.

(2)如图,DE=D'E,∠DAEBAC有怎样的数量关系?请写出,并说明理由.

【答案】(1)详见解析;(2)DAE=BAC,理由详见解析.

【解析】

(1)根据旋转的性质和全等三角形的判定定理SAS证得DAE≌△D′AE,则由全等三角形的对应边相等的性质证得结论;
(2)∠DAE=∠BAC.根据旋转的性质和全等三角形的判定定理SSS证得DAE≌△D′AE,则由全等三角形的对应角相等的性质推知∠DAE=∠BAC.

(1)证明:如图,

ABD旋转得到△ACD',

DAD'=BAC=120°,AD=AD'.

DAE=60°,

EAD'=DAD'-DAE=120°-60°=60°.

DAE=D'AE,

∵AE=AE,AD=AD',

DAE≌△D'AE(SAS).

∴DE=D'E.

(2):∠DAE=BAC.

理由:如图,

ABD旋转得到△ACD',

DAD'=BAC,AD=AD'.

∵DE=D'E,AE=AE,

DAE≌△D'AE(SSS).

DAE=D'AE=DAD'.

DAE=BAC.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC 中,∠BAC=90°,ABACD AC 边上一动点, CEBD E

(1)如图(1),若 BD 平分∠ABC 时,①求∠ECD 的度数;②求证:BD=2EC

(2)如图(2),过点 A AFBE 于点 F,猜想线段 BECEAF 之间的数量关系并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在△ABC中,∠A:∠B:∠C=2:3:4,CD是∠ACB平分线,求∠A和∠CDB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠E=50°,BAC=50°,D=110°,求∠ABD的度数.

请完善解答过程,并在括号内填写相应的理论依据.

解:∵∠E=50°,BAC=50°,(已知)

∴∠E=   (等量代换)

      .(   

∴∠ABD+D=180°.(   

∴∠D=110°,(已知)

∴∠ABD=70°.(等式的性质)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在下列条件中,不能证明ABD≌△ACD的是( ).

A.BD=DCAB=AC B.ADB=ADCBD=DC

C.B=CBAD=CAD D. B=CBD=DC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数的图像与正比例函数的图像相交于点A(2,),与轴相交于点B

(1)求的值;

(2)在轴上存在点C,使得AOC的面积等于AOB的面积,求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,下列判断错误的是( )

A. 如果∠2=∠4,那么AB∥CD B. 如果∠1=∠3,那么AB∥CD

C. 如果∠BAD+∠D=180°,那么AB∥CD D. 如果∠BAD+∠B=180,那么AD∥CD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探索与发现:

(1)若直线a1a2a2a3,则直线a1a3的位置关系是__________,请说明理由.

(2)若直线a1a2a2a3a3a4,则直线a1a4的位置关系是________(直接填结论,不需要证明)

(3)现在有2 011条直线a1a2a3a2 011,且有a1a2a2a3a3a4a4a5,请你探索直线a1a2 011的位置关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).
某校九年级50名学生跳高测试成绩的频数表

组别(m)

频数

1.09~1.19

8

1.19~1.29

12

1.29~1.39

A

1.39~1.49

10


(1)求A的值,并把频数直方图补充完整;
(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.

查看答案和解析>>

同步练习册答案