分析 (1)连接OC,根据CD⊥AC得出AD是⊙O的直径再由等腰三角形的性质得出∠OAC=∠OCA=30°,故∠COB=60°.根据三角形内角和定理得出∠OCB=90°,由此可得出结论;
(2)连接DE,由角平分线的性质得出∠ACE=∠DCE,故可得出$\widehat{AE}$=$\widehat{DE}$,AE=DE,再由勾股定理即可得出结论.
解答 (1)证明:连接OC,
∵CD⊥AC,
∴AD是⊙O的直径.
∵OA=OC,
∴∠OAC=∠OCA=30°,
∴∠COB=60°.
∵AC=BC,∠CAB=30°,
∴∠B=30°,
∴∠OCB=90°,
∴BC是⊙O的切线;
(2)解:连接DE,
在Rt△ACD中,
∵∠CAD=30°,CD=1,
∴AD=2CD=2,
∵CE平分∠ACD交⊙O于点E,
∴∠ACE=∠DCE,
∴$\widehat{AE}$=$\widehat{DE}$,
∴AE=DE.
设AE=x,由勾股定理得,x2+x2=22,解得x=$\sqrt{2}$,即AE=$\sqrt{2}$.
点评 本题考查的是切线的性质,根据题意作出辅助线,构造出直角三角形,利用三角形内角和定理及勾股定理求解是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 4个 | B. | 3个 | C. | 2个 | D. | 1个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | B. | C. | D. |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 三内角之比为1:2:3 | B. | 三边长的平方之比为1:2:3 | ||
C. | 三边长之比为3:4:5 | D. | 三内角之比为3:4:5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com