精英家教网 > 初中数学 > 题目详情
画图求方程x2=-x+2的解,你是如何解决的呢?我们来看一看下面两位同学不同的方法.
甲:先将方程x2=-x+2化为x2+x-2=0,再画出y=x2+x-2的图象,观察它与x轴的交点,得出方程的解;
乙:分别画出函数y=x2和y=-x+2的图象,观察它们的交点,并把交点的横坐标作为方程的解.
你对这两种解法有什么看法?请与你的同学交流.
甲、乙两同学的解法都可行,但是乙的方法更简单,因为画抛物线远比画直线困难,
所以只要事先画好抛物线y=x2的图象,再根据待解的方程,画出相应的直线,交点的横坐标即为方程的解.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知一元二次方程x2+px+q+1=0的一根为2.
(1)求q关于p的关系式;
(2)求证:抛物线y=x2+px+q与x轴有两个交点;
(3)设抛物线y=x2+px+q的顶点为M,且与x轴相交于A(x1,0)、B(x2,0)两点,求使△AMB面积最小时的抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=(x+m)2+k的顶点为(1,-4)
(1)求二次函数的解析式及图象与x轴交于A、B两点的坐标.
(2)将二次函数的图象沿x轴翻折,得到一个新的抛物线,求新抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知:二次函数y=x2-4x-a,下列说法中错误的个数是(  )
①若图象与x轴有交点,则a≤4
②若该抛物线的顶点在直线y=2x上,则a的值为-8
③当a=3时,不等式x2-4x+a>0的解集是1<x<3
④若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a=-1
⑤若抛物线与x轴有两个交点,横坐标分别为x1、x2,则当x取x1+x2时的函数值与x取0时的函数值相等.
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知关于x的方程mx2-(3m-1)x+2m-2=0.
(1)求证:无论m取任何实数时,方程恒有实数根;
(2)若关于x的二次函数y=mx2-(3m-1)x+2m-2的图象与x轴两交点间的距离为2时,求抛物线的解析式;
(3)在直角坐标系xoy中,画出(2)中的函数图象,结合图象回答问题:当直线y=x+b与(2)中的函数图象只有两个交点时,求b的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

为了美化校园环境,某中学准备在一块空地(如图,矩形ABCD,AB=10m,BC=20m)上进行绿化.中间的一块(图中四边形EFGH)上种花,其他的四块(图中的四个Rt△)上铺设草坪,并要求AE=AH=CF=CG.那么在满足上述条件的所有设计中,是否存在一种设计,使得四边形EFGH(中间种花的一块)面积最大?若存在,请求出该设计中AE的长和四边形EFGH的面积;若不存在,请说明理由!

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知二次函数y=ax2+bx+c的部分图象,由图象可知关于x的一元二次方程ax2+bx+c=0的两个根分别是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,函数y=(k-2)x2-
7
x+(k-5)的图象与x轴只有一个交点,则交点的横坐标x0=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若关于x的方程ax2+bx+c=0(a≠0)的两个根分别为x1=1,x2=2,则抛物线y=ax2+bx+c与x轴的交点坐标分别为______.

查看答案和解析>>

同步练习册答案