精英家教网 > 初中数学 > 题目详情
18、如图,已知点C是∠AOB平分线上一点,点E,F分别在边OA,OB上,如果要得到OE=OF,需要添加以下条件中的某一个即可,请你写出所有可能结果的序号为
①②④
①∠OCE=∠OCF;②∠OEC=∠OFC;③EC=FC;④EF⊥OC.
分析:要得到OE=OF,就要让△OCE≌△OCF,①②④都行,只有③EC=FC不行,因为证明三角形全等没有边边角定理.
解答:解:①若①∠OCE=∠OCF,根据三角形角平分线的性质可得,∠EOC=∠COF,故居ASA定理可求出△OEC≌△OFC,由三角形全等的性质可知OE=OF.正确;
②若∠OEC=∠OFC,同①可得△OEC≌△OFC,由三角形全等的性质可知OE=OF.正确;
③若EC=FC条件不够不能得出.错误;
④若EF⊥OC,根据SSS定理可求出△OEC≌△OFC,由三角形全等的性质可知OE=OF.正确.
故填①②④.
点评:本题主要考查了三角形全等的判与性质;由求线段相等转化为添加条件使三角形全等是正确解答本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知点A是函数y=x与y=
4
x
的图象在第一象限内的交点,点B在x轴负半轴上,且OA=OB,则△AOB的面积为(  )
A、2
B、
2
C、2
2
D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,已知点C是AB上一点,△ACM、△CBN都是等边三角形.
(1)说明AN=MB;
(2)将△ACM绕点C按逆时针旋转180°,使A点落在CB上,请对照原题图画出符合要求的图形;
(3)在(2)所得到的图形中,结论“AN=BM”是否成立?若成立,请说明理由;若不成立,也请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:已知点C是线段AB上的点,△ACD与△BCE都是正三角形,F、G、精英家教网M、N分别是线段AC、CE、CD、CB的中点,
求证:FG=MN.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知点E是矩形ABCD的边AB上一点,且EF⊥AC,EG⊥BD,AB=4cm,AD=3cm,则EF+EG=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知点C是线段AD的中点,AC=15cm,BC=22cm,分别求线段AD和BD的长度.

查看答案和解析>>

同步练习册答案