如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F在BC边上(不与点B,C重合).
第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;
第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;
依次操作下去…
(1)图2中的△EFD是经过两次操作后得到的,其形状为 ,求此时线段EF的长;
(2)若经过三次操作可得到四边形EFGH.
①请判断四边形EFGH的形状为 ,此时AE与BF的数量关系是 ;
②以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围;
(3)若经过多次操作可得到首尾顺次相接的多边形,其最大边数是多少?它可能是正多边形吗?如果是,请直接写出其边长;如果不是,请说明理由.
解:(1)如题图2,由旋转性质可知EF=DF=DE,则△DEF为等边三角形.
在Rt△ADE与Rt△CDF中,
∴Rt△ADE≌Rt△CDF(HL)
∴AE=CF.
设AE=CF=x,则BE=BF=4﹣x
∴△BEF为等腰直角三角形.
∴EF=BF=(4﹣x).
∴DE=DF=EF=(4﹣x).
在Rt△ADE中,由勾股定理得:AE2+AD2=DE2,即:x+42=[(4﹣x]2,
解得:x1=8﹣4,x2=8+4(舍去)
∴EF=(4﹣x)=4﹣4.
DEF的形状为等边三角形,EF的长为4﹣4.
(2)①四边形EFGH的形状为正方形,此时AE=BF.理由如下:
依题意画出图形,如答图1所示:
由旋转性质可知,EF=FG=GH=HE,∴四边形EFGH的形状为正方形.
∵∠1+∠2=90°,∠2+∠3=90°,
∴∠1=∠3.
∵∠3+∠4=90°,∠2+∠3=90°,
∴∠2=∠4.
在△AEH与△BFE中,
∴△AEH≌△BFE(ASA)
∴AE=BF.
②利用①中结论,易证△AEH、△BFE、△CGF、△DHG均为全等三角形,
∴BF=CG=DH=AE=x,AH=BE=CF=DG=4﹣x.
∴y=S正方形ABCD﹣4S△AEH=4×4﹣4×x(4﹣x)=2x2﹣8x+16.
∴y=2x2﹣8x+16(0<x<4)
∵y=2x2﹣8x+16=2(x﹣2)2+8,
∴当x=2时,y取得最小值8;当x=0时,y=16,
∴y的取值范围为:8≤y<16.
(3)经过多次操作可得到首尾顺次相接的多边形,其最大边数是8,它可能为正多边形,边长为4﹣4.
如答图2所示,粗线部分是由线段EF经过7次操作所形成的正八边形.
设边长EF=FG=x,则BF=CG=x,
BC=BF+FG+CG=x+x+x=4,解得:x=4﹣4.
科目:初中数学 来源: 题型:
如图,在坡角为30°的山坡上有一铁塔AB,其正前方矗立着一大型广告牌,当阳光与水平线成45°角时,测得铁塔AB落在斜坡上的影子BD的长为6米,落在广告牌上的影子CD的长为4米,求铁塔AB的高(AB,CD均与水平面垂直,结果保留根号).
查看答案和解析>>
科目:初中数学 来源: 题型:
有六张完全相同的卡片,分A,B两组,每组三张,在A组的卡片上分别画上“√,×,×”,如图1.
(1)若将卡片无标记的一面朝上摆在桌上再分别从两组卡片中随机各抽取一张,求两张卡片上标记都是“√”的概率.(请用“树形图法”或“列表法“求解)
(2)若把A,B两组卡片无标记的一面对应粘贴在一起得到三张卡片,其正、反面标记如图2所示,将卡片正面朝上摆在桌上,并用瓶盖盖住标记.
①若随机揭开其中一个盖子,看到的标记是“√”的概率是多少?
②若揭开盖子,看到的卡片正面标记是“√”后,猜想它的反面也是“√”,求猜对的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图①,已知等腰梯形ABCD的周长为48,面积为S,AB∥CD,∠ADC=60°,设AB=3x.
(1)用x表示AD和CD;
(2)用x表示S,并求S的最大值;
(3)如图②,当S取最大值时,等腰梯形ABCD的四个顶点都在⊙O上,点E和点F分别是AB和CD的中点,求⊙O的半径R的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC边上的高.动点P从点A出发,沿A→D方向以cm/s的速度向点D运动.设△ABP的面积为S1,矩形PDFE的面积为S2,运动时间为t秒(0<t<8),则t= 秒时,S1=2S2.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com