精英家教网 > 初中数学 > 题目详情

【题目】如图,点在数轴上表示的数是-8,点在数轴上表示的数是16.若点6个单位长度/秒的速度向右匀速运动,同时点2个单位长度/秒的速度向左匀速运动.问:当时,运动时间为多少秒?

A. 2B. 13.4C. 2秒或4D. 2秒或6

【答案】C

【解析】

分点B在右边,点A在左边和点B在左边,点A在右边两种可能.用t表示AB的长度,根据AB=8列方程求解即可.

设当时,运动时间为t秒,

根据题意AB对应数字分别是:-8+6t16-2t

当点B在右边,点A在左边时,AB =16-2t--8+6t=24-8t
AB=8,∴24-8t8,∴t=2

当点B在左边,点A在右边时,AB =-8+6t -16-2t=-24+8t
AB=8,∴-24+8t=8,∴t=4
∴当时,运动时间为2秒或4

故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(1)已知一个角的补角比它的余角的 3 倍大 30°,求这个角的度数;

(2)如图,点 C、D在线段 AB上, D是线段 AB的中点, AC AD , AB6,求线段 CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC三条边的长度分别是,记△ABC的周长为CABC

1)当x2时,△ABC的最长边的长度是   (请直接写出答案);

2)请求出CABC(用含x的代数式表示,结果要求化简);

3)我国南宋时期数学家秦九韶曾提出利用三角形的三边长求面积的秦九韶公式:S.其中三角形边长分别为abc,三角形的面积为S

x为整数,当CABC取得最大值时,请用秦九韶公式求出△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学习相似三角形和解直角三角形的相关内容后,张老师请同学们交流这样的一个问题:“如上图,在正方形网格上有△A1B1C1和△A2B2C2 , 这两个三角形是否相似?”,那么你认为△A1B1C1和△A2B2C2 , (相似或不相似);理由是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为“有趣三角形”,这条中线称为“有趣中线”。如图,在三角形ABC中,∠C=90°,较短的一条直角边BC=1,且三角形ABC是“有趣三角形”,求三角形ABC的“有趣中线”的长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE.

解:∵AB∥CD(已知)

∴∠4=∠

∵∠3=∠4(已知)

∴∠3=∠

∵∠1=∠2(已知)

∴∠1+∠CAF=∠2+∠CAF(

即∠ =∠

∴∠3=∠

∴AD∥BE(

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知1=2,要得到ABD≌△ACE,从下列条件中补选一个,则错误的是( )

A.AB=AC B.DB=EC C.ADB=AEC D.B=C

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A的坐标为(10),以线段OA为边在第四象限内作等边三角形△AOB,点Cx正半轴上一动点(OC1),连接BC,以线段BC为边在第四象限内作等边三角形△CBD,连接DA并延长,交y轴于点E.

(1)求证:△OBC≌△ABD

(2)在点C的运动过程中,∠CAD的度数是否会变化?如果不变,请求出∠CAD的度数;如果变化,请说明理由.

(3)当点C运动到什么位置时,以AEC为顶点的三角形是等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数y= 的图象上,过点A的直线y=x+b交x轴于点B.

(1)求k和b的值;
(2)求△OAB的面积.

查看答案和解析>>

同步练习册答案