精英家教网 > 初中数学 > 题目详情
5.某学校活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:
(1)【操作发现】
在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是①②③④(填序号即可)
①AF=AG=$\frac{1}{2}$AB;②MD=ME;③整个图形是轴对称图形;④MD⊥ME.
(2)【数学思考】
在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD与ME具有怎样的数量和位置关系?请给出证明过程;
(3)【类比探究】
在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MED的形状为等腰直角三角形.

分析 (1)操作发现:由条件可以通过三角形全等和轴对称的性质,直角三角形的性质就可以得出结论;
(2)数学思考:作AB、AC的中点F、G,连接DF,MF,EG,MG,根据三角形的中位线的性质和等腰直角三角形的性质就可以得出四边形AFMG是平行四边形,从而得出△DFM≌△MGE,根据其性质就可以得出结论;
(3)类比探究:作AB、AC的中点F、G,连接DF,MF,EG,MG,DF和MG相交于H,根据三角形的中位线的性质可以得出△DFM≌△MGE,由全等三角形的性质就可以得出结论.

解答 解:(1)操作发现:
∵△ADB和△AEC是等腰直角三角形,
∴∠ABD=∠DAB=∠ACE=∠EAC=45°,∠ADB=∠AEC=90°
在△ADB和△AEC中,$\left\{\begin{array}{l}{∠ADB=∠AEC}\\{∠ABD=∠ACE}\\{AB=AC}\end{array}\right.$,
∴△ADB≌△AEC(AAS),
∴BD=CE,AD=AE,
∵DF⊥AB于点F,EG⊥AC于点G,
∴AF=BF=DF=$\frac{1}{2}$AB,AG=GC=GE=$\frac{1}{2}$AC.
∵AB=AC,
∴AF=AG=$\frac{1}{2}$AB,故①正确;
∵M是BC的中点,
∴BM=CM.
∵AB=AC,
∴∠ABC=∠ACB,
∴∠ABC+∠ABD=∠ACB+∠ACE,
即∠DBM=∠ECM.
在△DBM和△ECM中,$\left\{\begin{array}{l}{BD=CE}\\{∠DBM=∠ECM}\\{BM=CM}\end{array}\right.$,
∴△DBM≌△ECM(SAS),
∴MD=ME.故②正确;
如图1.连接AM,根据前面的证明可以得出将图形1,沿AM对折左右两部分能完全重合,
∴整个图形是轴对称图形,故③正确.
∵AB=AC,BM=CM,
∴AM⊥BC,
∴∠AMB=∠AMC=90°,
∵∠ADB=90°,
∴四边形ADBM四点共圆,
∴∠ADM=∠ABM,
∵∠AHD=∠BHM,
∴∠DAB=∠DMB,故④正确,
故答案为:①②③④

(2)数学思考:
MD=ME,MD⊥ME.
理由:如图2,作AB、AC的中点F、G,连接DF,MF,EG,MG,
∴AF=$\frac{1}{2}$AB,AG=$\frac{1}{2}$AC.
∵△ABD和△AEC是等腰直角三角形,
∴DF⊥AB,DF=$\frac{1}{2}$AB,EG⊥AC,EG=$\frac{1}{2}$AC,
∴∠AFD=∠AGE=90°,DF=AF,GE=AG.
∵M是BC的中点,
∴MF∥AC,MG∥AB,
∴四边形AFMG是平行四边形,
∴AG=MF,MG=AF,∠AFM=∠AGM.
∴MF=GE,DF=MG,∠AFM+∠AFD=∠AGM+∠AGE,
∴∠DFM=∠MGE.
在△DFM和△MGE中,$\left\{\begin{array}{l}{FM=GE}\\{∠DFM=∠MGE}\\{DF=MG}\end{array}\right.$
∴△DFM≌△MGE(SAS),
∴DM=ME,∠FDM=∠GME.
∵MG∥AB,
∴∠GMH=∠BHM.
∵∠BHM=90°+∠FDM,
∴∠BHM=90°+∠GME,
∵∠BHM=∠DME+∠GME,
∴∠DME+∠GME=90°+∠GME,
即∠DME=90°,
∴MD⊥ME.
∴DM=ME,MD⊥ME;

(3)类比探究:等腰直角三角形,理由如下:
∵点M、F、G分别是BC、AB、AC的中点,
∴MF∥AC,MF=$\frac{1}{2}$AC,MG∥AB,MG=$\frac{1}{2}$AB,
∴四边形MFAG是平行四边形,
∴MG=AF,MF=AG.∠AFM=∠AGM
∵△ADB和△AEC是等腰直角三角形,
∴DF=AF,GE=AG,∠AFD=∠BFD=∠AGE=90°
∴MF=EG,DF=MG,∠AFM-∠AFD=∠AGM-∠AGE,
即∠DFM=∠MGE.
在△DFM和△MGE中,$\left\{\begin{array}{l}{FM=GE}\\{∠DFM=MGE}\\{DF=MG}\end{array}\right.$,
∴△DFM≌△MGE(SAS),
∴MD=ME,∠MDF=∠EMG.
∵MG∥AB,
∴∠MHD=∠BFD=90°,
∴∠HMD+∠MDF=90°,
∴∠HMD+∠EMG=90°,
即∠DME=90°,
∴△DME为等腰直角三角形,
故答案为:等腰直角三角形

点评 本题是几何变换综合题,主要考查了等腰直角三角形的性质的运用,等腰三角形的性质的运用,全等三角形的判定及性质的运用,三角形的中位线的性质的运用,直角三角形的斜边上的中线的性质的运用,平行四边形的判定及性质的运用,解答时根据三角形的中位线的性质制造全等三角形是解答本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.计算:1-2+3-4+5-6+…+2013-2014+2015-2016.

查看答案和解析>>

科目:初中数学 来源:2016-2017学年湖北省枝江市九校七年级3月联考数学试卷(解析版) 题型:单选题

如图,已知AB∥CD,则∠α的度数是(  )

A. 60° B. 25° C. 75° D. 85°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.等腰三角形一腰上的垂直平分线与这个三角形的另一边(或边所在直线)的夹角为20°,则这个等腰三角形的顶角为70°或110°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图1,直线y=$-\frac{1}{2}$x+2交坐标轴于A,B两点,交双曲线y=$\frac{k}{x}$(x<0)于点C,且S△AOC=8.
(1)求k的值;
(2)如图2,A,G关于y轴对称,P为双曲线上一点,过P作PD⊥x轴于D,分别交BG,AB于F,E.求证:DE+DF=4;
(3)Q为双曲线上另一动点,连接OQ,过C作CM⊥OQ于M,CN⊥y轴于N,如图3,当Q点运动时,∠OMN是否为定值?猜想并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,正方形OABC的边OA,OC在坐标轴上,点B的坐标为(-4,4).点P从点A出发,以每秒1个单位长度的速度向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,连接BP,过P点作BP的垂线,与过点Q平行于y轴的直线l相交于点D.BD与y轴交于点E,连接PE.设点P运动的时间为t(s).
(1)当t=1时,求点D的坐标;
(2)设△POD的面积为S,求S关于t的函数关系式;
(3)在P的运动过程中,是否存在某一时刻,使得△PBE为等腰三角形?若存在,请求出满足条件的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.当a=3,b=-1时,求(a+b)(a-b)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.画出函数y=|x-2|+1的图象,并说出随着x的增大,y怎样变化?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知:矩形ABCD中,AB=1,AD=a,在BC边上存在唯一一点Q,使AQ⊥DQ,求a.

查看答案和解析>>

同步练习册答案