精英家教网 > 初中数学 > 题目详情
16.如图,已知E′(2,-1),F′($\frac{1}{2}$,$\frac{1}{2}$),以原点O为位似中心,按比例尺1:2把△EFO扩大,则E′点对应点E的坐标为(  )
A.(-4,2)B.(4,-2)C.(-1,-1)D.(-1,4)

分析 根据位似变换的性质计算即可.

解答 解:∵E′(2,-1),以原点O为位似中心,按比例尺1:2把△EFO扩大,
∴E′点对应点E的坐标为(2×2,-1×2),即(4,-2),
故选:B.

点评 本题考查的是位似变换的性质,掌握平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.已知抛物线y=x2-2x-a.
(1)若抛物线与x轴有两个交点,求a的取值范围;
(2)当代数式x2-2x-1的值为负整数时,求x的值.
(3)设抛物线与y轴的交点为A,顶点为B,直线AB与x轴交于点C,抛物线与x轴的右交点为D,是否存在C,D两点关于y轴对称的情况?如果存在,求出此时a的值;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,分别表示甲步行与乙汽自行车(在同一条路上)行走的路程S、S与时间t的关系,观察图象并回答下列问题:
(1)乙出发时,乙与甲相距10千米;
(2)走了一段路程后,乙的自行车发生故障,停下来修车的时间为1小时;
(3)乙从出发起,经过3小时与甲相遇;
(4)甲行走的平均速度是多少千米/小时?
(5)乙骑自行车出故障前的速度与修车后的速度一样吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D是AC延长线上一点,连结BD.将△BCD绕着点C顺时针旋转90°得到△ACE,延长AE交BD于F.

(1)依据题意补全图1;
(2)判断AE与BD的位置关系,说明理由;
(3)连结CF,求∠CFA的度数.
要想求出∠CFA的度数,小明经过思考,得到了以下几种想法:
想法1:在AF上取一点G,使得AG=BF,需要先证明△AGC≌△BFC,然后再证明△CFG是等腰直角三角形.
想法2:取AB的中点O,连接OC,OF,只需要利用圆的性质证明∠CFA=∠ABC.
想法3:将△ACF绕点C逆时针旋转90°,得到△BCG,只需证明△FCG是等腰直角三角形.
请你参考上面的想法,帮助小明求解.(写出一种方法即可)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.一手机经销商计划购进某品牌的A型、B型两款手机共40部,每款手机至少要购进10部,设购进A型手机x部,B型手机y部,两款手机的金价和预售价如表:
手机型号A型B型
进价(单位:元/部)9001200
预售价(单位:元/部)12001600
(1)求出y与x之间的函数关系式;
(3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元.
①求出预估利润P(元)与x(部)的函数关系式;
②求出预估利润的最大值,并写出此时购进两款手机各多少部.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.在Rt△ABC中,AC=BC=6,以A为旋转中心将△ABC顺时针旋转30°得到△ADE,则图中阴影部分的面积=3π.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,在平面直角坐标系中,直线l的函数表达式为y=x,点O1的坐标为(1,0),以O1为圆心,O1O为半径画圆,交直线l于点P1,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交直线l于点P2,交x轴正半轴于点O3,以O3为圆心,O3O为半径画圆,交直线l于点P3,交x轴正半轴于点O4;…按此做法进行下去,其中$\widehat{{P}_{2017}{O}_{2018}}$的长为22015π..

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.关于x的一元二次方程(a-1)x2+3x-2=0有实数根,则a的取值范围是(  )
A.$a>-\frac{1}{8}$B.$a≥-\frac{1}{8}$C.$a>-\frac{1}{8}$且a≠1D.$a≥-\frac{1}{8}$且a≠1

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.“可燃冰”的开发成功,拉开了我国开发新能源的大门,目前发现我国南海“可燃冰”储存量达到800亿吨,将800亿吨用科学记数法可表示为8×1010吨.

查看答案和解析>>

同步练习册答案