精英家教网 > 初中数学 > 题目详情

如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△EFD绕点A 顺时针旋转,当DF边与AB边重合时,旋转中止。不考虑旋转开始和结束时重合的情况,设DE、DF(或它们的延长线)分别交BC(或它的延长线)于G、H点,如图(2)。

1.问:始终与△AGC相似的三角形有                

2.设CG=x,BH=y,求y关于x的函数关系式(只要求根据2的情况说明理由);

3.问:当x为何值时,△AGH是等腰三角形?

 

【答案】

 

1.△HGA及△HAB

2.

由(1)可知△AGC∽△HAB,∴

,所以

3.

①当CG<BC时,∠GAC=∠H<∠HAC,

∴AC<CH∵AG<AC,∴AG<GH,

又AH>AG,AH>GH,此时,△AGH不可能是等腰三角形;

②当CG=BC时,G为BC的中点,H与C重合,△AGH是等腰三角形;

此时,GC=,即x=

③当CG>BC时,由(1)可知△AGC∽△HGA,

所以,若△AGH必是等腰三角形,只可能存在AG=AH;

若AG=AH,则AC=CG,此时x=9;

综上,当x=9或时,△AGH是等腰三角形。

 【解析】略

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,等边三角形ABC中,D、E分别是BC、AC上的点,且AE=CD.
(1)求证:AD=BE;
(2)求:∠BFD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等腰直角△ABC中,∠ABC=90°,AB=BC,AD∥BC,E是AB的中点,BE=AD.
(1)试说明:CE⊥BD;
(2)线段AC与ED之间存在什么关系?为什么?
(3)判断△BDC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图,△DEF是由△ABC平移得到的,若BC=6cm,E是BC的中点,则平移的距离是
3
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等边△ABC中,线段AM为BC边上的中线.动点D在直线AM上时,以CD为一边且在CD的下精英家教网方作等边△CDE,连接BE.
(1)填空:当点D运动到点M时,∠ACE=
 
度;
(2)当点D在线段AM上(点D不运动到点A)时,求证:△ADC≌△BEC;
(3)若AB=8,以点C为圆心,以5为半径作⊙C与直线BE相交于点P、Q两点,在点D运动的过程中(点D与点A重合除外),试求PQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,圆内接△ABC中,AB=BC=CA,OD、OE为⊙O的半径,OD⊥BC于点F,OE⊥AC于点G,阴影部分四边形OFCG的面积是△ABC的面积的
 

查看答案和解析>>

同步练习册答案