【题目】在图1至图3中,的直径,切于点,,连接交于点,连接,是线段上一点,连接.
(1)如图1,当点,的距离最小时,求的长;
(2)如图2,若射线过圆心,交于点,,求的值;
(3)如图3,作于点,连接,直接写出的最小值.
【答案】(1)12;(2);(3)的最小值为
【解析】
(1)连接,根据切线的性质和圆周角定理的推论可得,∠BDC=90°,利用勾股定理求出AB,然后根据三角形的面积公式即可求出CD,根据垂线段最短可得当时,点,的距离最小,从而求出PD的长;
(2)连接,则,利用勾股定理即可求出AE,然后根据相似三角形的判定定理证出,列出比例式,根据正切的定义即可求出结论;
(3)以 为直径作,则为的中点,利用勾股定理和圆的基本性质求出半径DG,根据直径所对的圆周角是直角可得点H一定在上,当点,,在一条直线上时,最小,利用勾股定理求出CG,即可求出结论.
解:(1)如图1,连接,
切于点,BC为直径
,∠BDC=90°
,,
.
由,
即,
解得,
当时,点,的距离最小,此时.
(2)如图2,连接,则.
由(1)知,,
由,
得,
解得.
,
.
又,
,
.
.
(3)的最小值为.
如图3,以 为直径作,则为的中点,
BD=
∴,
,
∴点总在上,,
∴当点,,在一条直线上时,最小,
此时,,
,
即的最小值为.
科目:初中数学 来源: 题型:
【题目】如图,某建筑物BC顶部有一旗杆AB,且点A、B、C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果精确到0.1m).参考数据:sin47°≈0.73,cos47°≈0.68,tan47°≈1.07,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的个数是( )
①为了了解一批灯泡的使用寿命,应采用全面调查的方式
②一组数据5,6,7,6, 8,10的众数和中位数都是6
③已知关于x的一元二次方程(x+1)2﹣m=0有两个实数根,则m的取值范围是m≥0
④式子有意义的条件是
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数y1=x+m的图象与反比例函数y2=的图象交于A、B两点,已知当x>1时,y1>y2;当0<x<1时,y1<y2.
(1)求一次函数的函数表达式;
(2)已知反比例函数在第一象限的图象上有一点C到x轴的距离为2,求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的袋子里装有独立包装的口罩,其中粉色口罩有3个、蓝色口罩有2个,这些口罩除了颜色外全部相同,从中随机依次不放回拿出两个口罩,则两个口罩都是粉色的概率是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为⊙的内接三角形,为⊙的直径,在线段上取点(不与端点重合),作,分别交、圆周于、,连接,已知.
(1)求证:为⊙的切线;
(2)已知,填空:
①当__________时,四边形是菱形;
②若,当__________时,为等腰直角三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD的边长为4,∠BAD=60°,点E是AD上一动点(不与A、D重合),点F是CD上一动点,AE+CF=4,则△BEF面积的最小值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《水浒传》《三国演义》《西游记》《红楼梦》(按照成书先后顺序)是中国古典长篇小说四大名著.
(1)小黄从这4部名著中,随机选择1部阅读,求他选中《西游记》的概率.
(2)某初中拟从这4部名著中,选择2部作为课外阅读书籍,求《西游记》被选中的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC上,AM的延长线交⊙O于点G,交过C的直线于F,∠1=∠2,连结CB与DG交于点N.
(1)求证:CF是⊙O的切线;
(2)求证:△ACM∽△DCN;
(3)若点M是CO的中点,⊙O的半径为4,cos∠BOC=,求BN的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com