精英家教网 > 初中数学 > 题目详情
如图1,在等腰梯形ABCD中,AB∥CO,E是AO的中点,过点E作EF∥OC交BC于F,AO=4,OC=6,∠AOC=60°.现把梯形ABCO放置在平面直角坐标系中,使点O与原点重合,OC在x轴正半轴上,点A、B在第一象限内.
(1)求点E的坐标;
(2)点P为线段EF上的一个动点,过点P作PM⊥EF交OC于点M,过M作MN∥AO交折线ABC于点N,连接PN.设PE=x.△PMN的面积为S.
①求S关于x的函数关系式;
②△PMN的面积是否存在最大值,若不存在,请说明理由.若存在,求出面积的最大值;
(3)另有一直角梯形EDGH(H在EF上,DG落在OC上,∠EDG=90°,且DG=3,HG∥BC).现在开始操作:固定等腰梯形ABCO,将直角梯形EDGH以每秒1个单位的速度沿OC方向向右移动,直到点D与点C重合时停止(如图2).设运动时间为t秒,运动后的直角梯形为E′D′G′H′;探究:在运动过程中,等腰梯ABCO与直角梯形E′D′G′H′重合部分的面积y与时间t的函数关系式.
【答案】分析:(1)根据AO的长和E为AO的中点求的OE的长,然后根据∠AOC=60°求的点E的坐标即可.
(2)分当0≤x≤1时、当1<x≤4时求的S的最大值即可;
(3)分当0≤t≤2时、当2<x≤4时、当4<x≤5时三种情况利用梯形的面积公式求的面积与时间的函数关系式即可.
解答:解:(1)如图1,ED⊥OD与D点,
∵AO=4,E为AO的中点,
∴AE=2,
∵∠AOC=60°
∴ED=1,OD=
∴E(1,);
                          
(2)①当0≤x≤1时,在梯形ABCD中,由AB∥OC,MN∥OA,得MN=AB=4,
过点P作PH⊥MN,垂足为H,
由MN∥AO得∠NMC=∠B=60°所以∠PMH=30°
由E、F是AB、DC边的中点得EF∥BC,由EG⊥BC,PM⊥BC,得EG∥PM,
∴PM=EG=
在Rt△PMH中,sin∠PMH=,所以PH=PM•sin30°=
∴S△PMN=PH•MN=×4×=
当1<x≤4时,S=-
②若0≤x≤1时,S=
若1<x≤4时,S=-
∵-<0,
∴S随X的增大而减小,
∴S不存在最大值,
∴综上所述,当0≤x≤1时,S存在最大值,最大值为

(3)当0≤t≤2时,直角梯形E′D′G′H′落在等腰梯形内部,这时重叠部分的面积即为直角梯形面积,
y=×(2+3)×=(如图1),
当2<x≤4时,y=(E′H′+D′G′)•D′E′=×(4-t+5-t)×=-t+
当4<x≤5时,DC=5-t,DE=(5-t)
∴y=DC•DE=(5-t)××(5-t)=(5-t)2
点评:本题考查了一次函数的综合知识、直角梯形、等腰梯形的性质及梯形的中位线定理的知识,考查的知识点比较多,但难度不算很大,此类题目通常出现在中考题的倒数第二个题目中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F.AB=4,BC=6,∠B=60度.
(1)求点E到BC的距离;
(2)点P为线段EF上的一个动点,过P作PM⊥EF交BC于点M,过M作MN∥AB交折线ADC于点N,连接PN,设EP=x.
①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN的周长;若改变,请说明理由;
②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在等腰梯形ABCD中,BC∥AD,BC=8,AD=20,AB=DC=10,点P从A点出发沿AD边向点D移动,点Q自A点出发沿A→B→C的路线移动,且PQ∥DC,若AP=x,梯形位于线段PQ右侧部分的面积为S.
(1)分别求出点Q位于AB、BC上时,S与x之间函数关系式,并写出自变量x的取值范围;
(2)当线段PQ将梯形ABCD分成面积相等的两部分时,x的值是多少?
(3)在(2)的条件下,设线段PQ与梯形ABCD的中位线EF交于O点,那么OE与OF的长度有什么关系?借助备用图2说明理由;并进一步探究:对任何一个梯形,当一直线l经过梯形中位线的中点并满足什么精英家教网条件时,其一定平分梯形的面积?(只要求说出条件,不需证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

基本模型
如下图,点B、P、C在同一直线上,若∠B=∠1=∠C=90°,则△ABP∽△PCD成立,
(1)模型拓展
如图1,点B、P、C在同一直线上,若∠B=∠1=∠C,则△ABP∽△PCD成立吗?为什么?
(2)模型应用
①如图2,在等腰梯形ABCD中,AD∥BC,AD=1,AB=2,BC=4,在BC上截取BP=AD,作∠APQ=∠B,PQ交CD于点Q,求CQ的长;
②如图3,正方形ABCD的边长为1,点P是线段BC上的动点,作∠APQ=90°,PQ交CD于Q,当P在何处时,线段CQ最长?最长是多少?
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•黔南州)杨老师在上四边形时给学生出了这样一个题.如图,若在等腰梯形ABCD中,M、N分别是AD、BC的中点,E、F分别是BM、CM的中点时.提出以下问题:
(1)在不添加其它线段的前提下,图中有哪几对全等三角形?请直接写出结论;
(2)猜想四边形MENF是何种的四边形?并加以说明;
(3)连接MN,当MN与BC有怎样的数量关系时,四边形MENF是正方形?(直接写出关系式,不需要说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一条直线与反比例函数y=
kx
的图象交于A(1,5),B(5,n)两点,与x轴交于D点.

(1)如图甲,①求反比例函数的解析式;②求n的值及D点坐标;
(2)连接AO、BO,求△ABO的面积;
(3)如图乙,在等腰梯形OBCE中,BC∥OE,OD=CE,OE在Y轴上,过点C作CF⊥Y轴于点F,CF和反比例函数的图象交于点P,当梯形OBCE的面积为10时,请判断PC和PF的大小关系,并说明理由.

查看答案和解析>>

同步练习册答案