精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,四边形OABC为矩形,OA=3,OC=4,P为直线AB上一动点,将直线OP绕点P逆时针方向旋转90°交直线BC于点Q.
(1)当点P在线段AB上运动(不与A,B重合)时,求证:OA•BQ=AP•BP;
(2)在(1)成立的条件下,设点P的横坐标为m,线段CQ的长度为l,求出l关于m的函数解析式,并判断l是否存在最小值?若存在,请求出最小值;若不存在,请说明理由;
(3)直线AB上是否存在点P,使△POQ为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

【答案】分析:(1)根据已知利用相似三角形的判定得到△AOP∽△BPQ,再根据相似三角形的对应边成比例即可得到OA•BQ=AP•BP;
(2)由第一问可求得BQ的值,从而求得l=3-
所以可得到当m=2时,l有最小值
(3)因为△POQ是等腰三角形所以PO=PQ,根据等式PA2+AO2=PB2+BQ2可求得m的值,从而就可确定点P的坐标.
解答:(1)证明:∵PO⊥PQ,
∴∠APO+∠BPQ=90°,
在Rt△AOP中,∠APO+∠AOP=90°,
∴∠BPQ=∠AOP,
∴△OAP∽△PBQ,则
即OA•BQ=AP•BP.(3分)

(2)解:∵OA•BQ=AP•BP,即BQ=
∴l=3-
∴当m=2时,l有最小值.(6分)

(3)解法一:
∵△POQ是等腰三角形
①若P在线段AB上,∠OPQ=90°
∴PO=PQ,又△OAP∽△PBQ,
∴△OAP≌△PBQ
∴PB=AO,即3=4-m,
∴m=1,即P点坐标(1,3);(8分)
②若P在线段AB的延长线上,PQ交CB的延长线于Q,PO=PQ,
又∵△AOP∽△BPQ,
∴△AOP≌△BPQ,
∴AO=PB,即3=m-4,即P点的坐标(7,3);
③当P在线段BA的延长线上时,显然不成立;
故存在P1(1,3),P2(7,3)使△POQ为等腰三角形;(10分)

解法二:
∵△POQ是等腰三角形
∴PO=PQ,
即PA2+AO2=PB2+BQ2(7分)
则m2+32=(4-m)2+(2(8分)
整理得m4-8m3+16m2-72m+63=0
m4-8m3+7m2+9m2-72m+63=0
m2(m2-8m+7)+9(m2-8m+7)=0
(m-1)(m-7)(m2+9)=0
∴m1=1,m2=7,m2=-9(舍去)
故存在P1(1,3),P2(7,3)使△POQ为等腰三角形.(10分)
点评:此题考查学生对等腰三角形的性质,相似三角形的判定,矩形的性质及二次函数等知识点的综合运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案