【题目】已知数轴上的A、B两点所对应的数分别为a、b.P为数轴上的一个动点.其中a,b满足(a﹣1)2+|b+5|=0,
(1)若点P为AB的中点,求P点对应的数.
(2)若点P从A点出发,以每秒2个单位的速度向左运动,t秒后,求P点所对应的数以及PB的距离.
(3)若数轴上点M、N所对应的数为m、n,其中A为PM的中点,B为PN的中点,无论点P在何处,是否为一个定值?若是,求出定值:若不是,请说明理由.
【答案】(1)-2;(2)P点表示1﹣2t, PB=|6﹣2t|;(3)是一个定值,定值为2.
【解析】
(1)先确定a、b定值,由数轴上数中点的特点,求出P点的对应数;
(2)由题意可知,P点t秒后运动距离2t,P点表示1﹣2t,即可求PB;
(3)设P点表示的数为x,由两个中点,可知x=2﹣m,x=﹣10﹣n,求得m﹣n=12,即MN=|m﹣n|=12,所以==2.
解:(1)由(a﹣1)2+|b+5|=0,
∴a=1,b=﹣5,
∴AB=6,
∵点P为AB的中点,
∴P点对应为﹣2;
(2)P点t秒后运动距离2t,
∴P点表示1﹣2t,
PB=|1﹣2t+5|=|6﹣2t|;
(3)设P点表示的数为x,
∵A为PM的中点,
∴x=2﹣m,
∵B为PN的中点,
∴x=﹣10﹣n,
∴2﹣m=﹣10﹣n,
∴m﹣n=12,
∵MN=|m﹣n|=12,
∴==2,
∴是一个定值,定值为2.
科目:初中数学 来源: 题型:
【题目】如图所示,已知△ABC和△BDE都是等边三角形.则下列结论:①AE=CD;②BF=BG;③∠AHC=60°;④△BFG是等边三角形;⑤HB平分∠AHD.其中正确的有( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠C=90°,∠B=30°,AB=10,点D是射线CB上的一个动点,△ADE是等边三角形,点F是AB的中点,连接EF.
(1)如图,点D在线段CB上时,
①求证:△AEF≌△ADC;
②连接BE,设线段CD=x,BE=y,求y2﹣x2的值;
(2)当∠DAB=15°时,求△ADE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.
学生立定跳远测试成绩的频数分布表
分组 | 频数 |
1.2≤x<1.6 | a |
1.6≤x<2.0 | 12 |
2.0≤x<2.4 | b |
2.4≤x<2.8 | 10 |
请根据图表中所提供的信息,完成下列问题:
(1)表中a= ,b= ,样本成绩的中位数落在 范围内;
(2)请把频数分布直方图补充完整;
(3)该校九年级共有1000名学生,估计该年级学生立定跳远成绩在2.4≤x<2.8范围内的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“十一”期间沈阳世博园(10月1日)的进园人数为万人,以后的6天里每天的进园人数变化如下表(正数表示比前一天多的人数负数表示比前一天少的人数,单位:万人)
日期 | 2日 | 3日 | 4日 | 5日 | 6日 | 7日 |
人数变化 |
(1)10月2日的进园人数是多少?
(2)10月1日-10月7日这7天内的进园人数最多的是哪天?最少的是哪天?它们相差多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:对于一个数x,我们把[x]称作x的相伴数;若x≥0,则[x]=x﹣1;若x<0,则[x]=x+1.例:[0.5]=﹣0.5.
(1)求[]、[﹣1]的值;
(2)当a>0,b<0时,有[a]=[b],试求代数式(b﹣a)3﹣3a+3b的值;
(3)解方程:[x]+[x+2]=1.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:数轴上点A、B、C表示的数分别为a、b、c,点O为原点,且a、b、c满足(a﹣6)2+|b﹣2|+|c﹣1|=0.
(1)直接写出a、b、c的值;
(2)如图1,若点M从点A出发以每秒1个单位的速度向右运动,点N从点B出发以每秒3个单位的速度向右运动,点R从点C出发以每秒2个单位的速度向右运动,点M、N、R同时出发,设运动的时间为t秒,t为何值时,点N到点M、R的距离相等;
(3)如图2,若点P从点A出发以每秒1个单位的速度向左运动,点Q从点B出发以每秒3个单位的速度向左运动,点P,Q同时出发开始运动,点K为数轴上的一个动点,且点C始终为线段PK的中点,设运动时间为t秒,若点K到线段PC的中点D的距离为3时,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1,是一个长为,宽为的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图2的形状拼成一个正方形.
(1)图2中的阴影部分的面积为 ;
(2)观察图2,三个代数式,,之间的等量关系是 ;
(3)若,,求;
(4)观察图3,你能得到怎样的代数恒等式呢?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在宽20米,长32米的矩形耕地上,修筑同样宽的三条路(两条纵向,一条横向,并且横向与纵向互相垂直),把这块耕地分成大小相等的六块试验田,要使试验田的面积是570平方米,问道路应该多宽?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com