精英家教网 > 初中数学 > 题目详情
如图,在x轴的正半轴上依次截取OA1=A1A2=A2A3=A3A4=A4A5,过点A1、A2、A3、A4、A5分别作x轴的垂线与反比例函数y=(x≠0)的图象相交于点P1、P2、P3、P4、P5,得直角三角形OP1A1、A1P2A2、A2P3A3、A3P4A4、A4P5A5,并设其面积分别为S1、S2、S3、S4、S5,则S5的值为   
【答案】分析:根据反比例函数中k的几何意义再结合图象即可解答.
解答:解:∵过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,S=|k|.
∴S1=1,S△OA2P2=1,
∵OA1=A1A2
S△OA2P2=
同理可得,S2=S1=,S3=S1=,S4=S1=,S5=S1=
点评:主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,正方形AOCB的边长为6,O为坐标原点,边OC在x轴的正半轴上,边O精英家教网A在y轴的正半轴上,E是边AB上的一点,直线EC交y轴于F,且S△FAE:S四边形AOCE=1:3.
(1)求出点E的坐标;
(2)求直线EC的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A,B两点,点A在x轴的负半轴,点B在x轴的正半轴,与y轴交于点C,且tan∠ACO=
1
2
,CO=BO,AB=3.则下列判断中正确的是(  )
A、此抛物线的解析式为y=x2+x-2
B、在此抛物线上的某点M,使△MAB的面积等于4,这样的点共有三个
C、此抛物线与直线y=-
9
4
只有一个交点
D、当x>0时,y随着x的增大而增大

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,正方形AOCB的边长为6,O为坐标原点,边OC在x轴的正半轴上,边OA在y轴的正半轴上,E是边AB上的一点,直线EC交y轴于F,且S△FAE:S四边形AOCE=1:3.
(1)求出点E的坐标;
(2)求直线EC的函数解析式.

查看答案和解析>>

科目:初中数学 来源:同步题 题型:解答题

如图,在平面直角坐标系中,正方形AOCB的边长为6,O为坐标原点,边OC在x轴的正半轴上,边OA在y轴的正半轴上.E是边AB上的一点,直线EC交y轴于F,且.  
(l)求出点E的坐标;  
(2)求直线EC的函数解析式.

查看答案和解析>>

科目:初中数学 来源:2008-2009学年北京市人大附中九年级(上)第一次月考数学试卷(解析版) 题型:解答题

如图,在平面直角坐标系中,正方形AOCB的边长为6,O为坐标原点,边OC在x轴的正半轴上,边OA在y轴的正半轴上,E是边AB上的一点,直线EC交y轴于F,且S△FAE:S四边形AOCE=1:3.
(1)求出点E的坐标;
(2)求直线EC的函数解析式.

查看答案和解析>>

同步练习册答案