精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠ABC=45° BC=4,以AC为直角边,点A为直角顶点向△ABC的外侧作等腰直角三角形ACD,连接BD,则△DBC的面积为( ) .

A.8B.10C.4D.8

【答案】A

【解析】

将△ABD绕着点A顺时针旋转90°得到△AECBDEC交于点O,连接BE,根据旋转的性质得到AE=AB,∠BAE=DOC=90°,过D点作DFBC,证△EBCBFD,可得DF=BC=4,再用三角形面积公式即可得出答案.

解:如下图所示,将△ABD绕着点A顺时针旋转90°得到△AECBDEC交于点O,连接BE

根据旋转的性质可知EC=BDAE=AB,∠BAE=DOC=90°,

∴△ABE是等腰直角三角形,

∴∠ABE=45°,

又∵∠ABC=45°,

∴∠EBC=90°,

∵∠BDF+DBF=90°,∠ECB+DBF=90°,

∴∠BDF=ECB

在△EBC和△BFD

∴△EBC≌△BFDAAS

DF=BC=4

∴△DBC的面积=

故选A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=(  )

A. 76° B. 78° C. 80° D. 82°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知方程组的解x为非正数,y为负数.

1)求a的取值范围;

2)化简∣a-3+a+2∣;

3).教科书中这样写道:我们把多项式a2+2ab+b2a2-2ab+b2叫做完全平方式.如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值、最小值等.

例如:分解因式x2+2x-3=(x2+2x+1)-4=(x+1)2-4=(x+1)2-4=(x+1+2)(x+1-2)=(x+3)(x-1)

根据阅读材料用配方法解决下列问题:

①分解因式:m2-4m-5=

②当ab为何值时,多项式a2+b2-4a+6b+13=0

③当ab为何值时,多项式a2-2ab+2b2-2a-4b+10=0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示的坐标系中,ABC的三个顶点的坐标依次为A(﹣12),B(﹣41),C(﹣2,﹣2).

1)请在这个坐标系中作出ABC关于y轴对称的A1B1C1

2)分别写出点A1B1C1的坐标.

3)求A1B1C1的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在半径为5的⊙O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,OP的长为( )

A. 3 B. 4 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的盒子里装有6个分别写有数字-3,-2,-1,0,1,2,的小球,它们除数字不同外其余全部相同.现从盒子里随机取出一个小球,记下数字a后不放回,再取出一个记下数字b,那么点(a,b)在抛物线y=-x2+1上的概率是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人的某一人.求第二次传球后球回到甲手里的概率.(请用画树状图列表等方式给分析过程)

(2)如果甲跟另外n(n≥2)个人做(1)同样的游戏,那么,第三次传球后球回到甲手里的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB∥CDCEBE的交点为E,现作如下操作:

第一次操作,分别作∠ABE∠DCE的平分线,交点为E1

第二次操作,分别作∠ABE1∠DCE1的平分线,交点为E2

第三次操作,分别作∠ABE2∠DCE2的平分线,交点为E3

n次操作,分别作∠ABEn1∠DCEn1的平分线,交点为En

∠En=1度,那∠BEC等于   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是( )

A. 了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查

B. 甲乙两人跳绳各10次,其成绩的平均数相等,,则甲的成绩比乙稳定

C. 三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是

D. “任意画一个三角形,其内角和是”这一事件是不可能事件

查看答案和解析>>

同步练习册答案