【题目】如图,在△ABC中,∠ABC=45° , BC=4,以AC为直角边,点A为直角顶点向△ABC的外侧作等腰直角三角形ACD,连接BD,则△DBC的面积为( ) .
A.8B.10C.4D.8
【答案】A
【解析】
将△ABD绕着点A顺时针旋转90°得到△AEC,BD与EC交于点O,连接BE,根据旋转的性质得到AE=AB,∠BAE=∠DOC=90°,过D点作DF⊥BC,证△EBC≌BFD,可得DF=BC=4,再用三角形面积公式即可得出答案.
解:如下图所示,将△ABD绕着点A顺时针旋转90°得到△AEC,BD与EC交于点O,连接BE,
根据旋转的性质可知EC=BD,AE=AB,∠BAE=∠DOC=90°,
∴△ABE是等腰直角三角形,
∴∠ABE=45°,
又∵∠ABC=45°,
∴∠EBC=90°,
∵∠BDF+∠DBF=90°,∠ECB+∠DBF=90°,
∴∠BDF=∠ECB
在△EBC和△BFD中
∴△EBC≌△BFD(AAS)
∴DF=BC=4
∴△DBC的面积=
故选A.
科目:初中数学 来源: 题型:
【题目】如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=( )
A. 76° B. 78° C. 80° D. 82°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知方程组的解x为非正数,y为负数.
(1)求a的取值范围;
(2)化简∣a-3∣+∣a+2∣;
(3).教科书中这样写道:“我们把多项式a2+2ab+b2及a2-2ab+b2叫做完全平方式.”如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值、最小值等.
例如:分解因式x2+2x-3=(x2+2x+1)-4=(x+1)2-4=(x+1)2-4=(x+1+2)(x+1-2)=(x+3)(x-1);
根据阅读材料用配方法解决下列问题:
①分解因式:m2-4m-5=
②当a,b为何值时,多项式a2+b2-4a+6b+13=0.
③当a,b为何值时,多项式a2-2ab+2b2-2a-4b+10=0.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示的坐标系中,△ABC的三个顶点的坐标依次为A(﹣1,2),B(﹣4,1),C(﹣2,﹣2).
(1)请在这个坐标系中作出△ABC关于y轴对称的△A1B1C1.
(2)分别写出点A1、B1、C1的坐标.
(3)求△A1B1C1的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在半径为5的⊙O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为( )
A. 3 B. 4 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的盒子里装有6个分别写有数字-3,-2,-1,0,1,2,的小球,它们除数字不同外其余全部相同.现从盒子里随机取出一个小球,记下数字a后不放回,再取出一个记下数字b,那么点(a,b)在抛物线y=-x2+1上的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”或“列表”等方式给分析过程)
(2)如果甲跟另外n(n≥2)个人做(1)同样的游戏,那么,第三次传球后球回到甲手里的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:
第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,
第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,
第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,
第n次操作,分别作∠ABEn﹣1和∠DCEn﹣1的平分线,交点为En.
若∠En=1度,那∠BEC等于 度
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A. 了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查
B. 甲乙两人跳绳各10次,其成绩的平均数相等,,则甲的成绩比乙稳定
C. 三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是
D. “任意画一个三角形,其内角和是”这一事件是不可能事件
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com