精英家教网 > 初中数学 > 题目详情
如图,在等腰三角形ABC中,AB=AC,AB+BC=13,AB边的垂直平分线MN交AC于点D,求△BCD的周长.
分析:根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AD=BD,然后推出△BCD的周长=BC+AC,代入数据进行计算即可得解.
解答:解:∵MN是AB的垂直平分线,
∴AD=BD,
∴△BCD的周长=BC+CD+BD=BC+CD+AD=BC+AC,
∵AB=AC,AB+BC=13,
∴△BCD的周长为13.
点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形的性质,求出△BCD的周长=BC+AC是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、已知:如图,在等腰三角形ABC中,∠A=90°,∠ABC的平分线BD与AC交于点D,DE⊥BC于点E.求证:AD=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•长春)感知:如图①,点E在正方形ABCD的边BC上,BF⊥AE于点F,DG⊥AE于点G,可知△ADG≌△BAF.(不要求证明)
拓展:如图②,点B、C分别在∠MAN的边AM、AN上,点E、F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC,求证:△ABE≌△CAF.
应用:如图③,在等腰三角形ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为9,则△ABE与△CDF的面积之和为
6
6

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰三角形ABC中,AB=AC=12,BC=8,又BD=3,CE=2.
求证:△ABD∽△BCE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图,在等腰三角形ABC中,AB=AC,AD是BC边上的中线,∠ABC的平分线BG,交AD于点E,EF⊥AB,垂足为F.
①若∠BAD=20°,则∠C=
70°
70°

②求证:EF=ED.
(2)如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.
①求∠ECD的度数;
②若CE=5,求BC长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰三角形ABC中,AB=AC,∠A=40°,线段AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE等于(  )

查看答案和解析>>

同步练习册答案