精英家教网 > 初中数学 > 题目详情
(2013•建邺区一模)如图,直线l与⊙O交于C、D两点,且与半径OA垂直,垂足为H,∠ODC=30°,在OD的延长线上取一点B,使得AD=BD.
(1)判断直线AB与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为2,求图中阴影部分的面积.(结果保留π)
分析:(1)求出△OAD是等边三角形,推出∠OAD=∠ODA=60°,求出∠DAB=∠B=30°,求出∠OAB=90°,关键切线的判定推出即可;
(2)求出△OAB和扇形OAD的面积,即可求出答案.
解答:解:(1)直线AB与⊙O的位置关系是相切,
理由是:∵AO⊥CD,
∴∠OAD=90°,
∵∠ODC=30°,
∴∠DOA=60°,
∵OA=OD,
∴△OAD是等边三角形,
∴∠OAD=∠ODA=60°,
∵AD=BD,
∴∠DAB=∠B,
∵∠ODA=∠B+∠DAB,
∴∠DAB=∠B=30°,
∴∠OAB=30°+60°=90°,
∵OA为半径,
∴直线AB是⊙O的切线,
即直线AB与⊙O的位置关系是相切.

(2)∵∠B=30°,∠OAB=90°,OA=2,
∴OB=2OA=4,由勾股定理得:AB=2
3

∴阴影部分的面积S=S△OAB-S扇形OAD=
1
2
×2
3
×2-
60π×22
360
=2
3
-
2
3
π.
点评:本题考查了等边三角形的性质和判定,等腰三角形的性质,三角形的外角性质,扇形的面积,三角形的面积等知识点的应用,主要考查学生综合运用机密性推理和计算的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•建邺区一模)-(+2)的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•建邺区一模)为迎接2013年“亚青会”,学校组织了一次游戏:每位选手朝特制的靶子上各投三以飞镖,在同一圆环内得分相同.如图所示,小明、小君、小红的成绩分别是29分、43分和33分,则小华的成绩是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•建邺区一模)在同一直角坐标系中,P、Q分别是y=-x+3与y=3x-5的图象上的点,且P、Q关于原点成中心对称,则点P的坐标是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•建邺区一模)在-1,(-2)2,304-
1
 
 
中任取一个数,取到正数的概率是
3
4
3
4

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•建邺区一模)如图,在直角坐标系中,直线y=2x与双曲线y=
kx
(k≠0)
相交于A、B两点,过A作AC⊥x轴,过B作BC⊥y轴,AC、BC交于点C且△ABC的面积为8,则k=
4
4

查看答案和解析>>

同步练习册答案