精英家教网 > 初中数学 > 题目详情

【题目】如图所示,在△中,=,点 边上,连接,则添加下列哪一个条件后,仍无法判定△与△全等(  )

A. B. C. =∠ D. =∠

【答案】C

【解析】

根据平行线的性质得到∠BDF=EFD,根据DEBC,=得到∠EDF=BFD,根据全等三角形的判定即可判断A;由= =BF,EDF=BFD,DF=DF即可得到BFD≌△EDF;由∠A=DFE,证不出BFD≌△EDF;由∠B=DEF,EDF=BFD,DF=DF,得到BFD≌△EDF.

A.EFAB

∴∠BDF=EFD

=,DEBC

∴∠EDF=BFD(平行线的性质),

DF=DF

BFDEDF,故本选项正确;

B.==BF,EDF=BFD,DF=DF,BFDEDF,故本选项正确;

C. 由∠A=DFE证不出BFDEDF,故本选项错误;

D.∵∠B=DEF,EDF=BFD,DF=DF,BFDEDF(AAS),故本选项正确.

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,CH是外角∠ACD的平分线,BH是∠ABC的平分线,∠A =58°,求∠H的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一单杆高2.2m,两立柱之间的距离为1.6m,将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状.
(1)一身高0.7m的小孩站在离立柱0.4m处,其头部刚好触上绳子,求绳子最低点到地面的距离;
(2)为供孩子们打秋千,把绳子剪断后,中间系上一块长为0.4米的木板,除掉系木板用去的绳子后,两边的绳子正好各为2米,木板与地面平行,求这时木板到地面的距离.(供选用数据: ≈1.8, ≈1.9, ≈2.1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展.现用4个全等的直角三角形拼成如图所示“弦图”.RtABC中,∠ACB=90°,若,请你利用这个图形解决下列问题:

(1)试说明

(2)如果大正方形的面积是10,小正方形的面积是2,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.
(1)求证:△ABC是等边三角形;
(2)若∠PAC=90°,AB=2 ,求PD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2﹣(2m+1)+( m2﹣1).
(1)求证:不论m取什么实数,该二次函数图象与x轴总有两个交点;
(2)若该二次函数图象经过点(2m﹣2,﹣2m﹣1),求该二次函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在海上观察所A,我边防海警发现正北5km的B处有一可疑船只正在向东方向12km的C处行驶.我边防海警即刻派船前往C处拦截.若可疑船只的行驶速度为60km/h,则我边防海警船的速度为多少时,才能恰好在C处将可疑船只截住?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在△ABC中,AD⊥BCD,CE⊥ABE,ADCE交于点F,且AD=CD.

(1)求证:△ABD≌△CFD;

(2)已知BC=7,AD=5,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,点A,B分别在射线Ox,Oy上移动,BE是∠ABy的角平分线,BE的反向延长线与∠OAB的平分线相交于点C,试问∠ACB的大小是否为定值?请给出证明。

查看答案和解析>>

同步练习册答案