分析 (1)根据准菱形的定义写出已知,结合图形写出求证,利用平行线的性质定理进行证明;
(2)分AE=AB,DE∥AB、BA=BD,DE∥AB、EA=ED,DE∥AB、DE=BD,DE∥AB四种情况,利用相似三角形的判定定理和性质定理计算即可.
解答 解:(1)已知:如图,“准菱形”ABCD中,AB=AD,AD∥BC,(AD≠BC).
求证:BD平分∠ABC.
证明:
∵AB=AD,
∴∠ABD=∠BDA,
又∵AD∥BC,
∴∠DBC=∠BDA.
∴∠ABD=∠DBC.
即BD平分∠ABC;
故答案为:如图,“准菱形”ABCD中,AB=AD,AD∥BC,(AD≠BC);BD平分∠ABC;∵AB=AD,∴∠ABD=∠BDA,又∵AD∥BC,∴∠DBC=∠BDA.∴∠ABD=∠DBC.即BD平分∠ABC;
(2)可以作出如下四种图形,
∵∠A=90°,AB=3,AC=4,
∴BC=5,
如图2,当AE=AB,DE∥AB时,
$\frac{DE}{AB}$=$\frac{CE}{CA}$,即$\frac{DE}{3}$=$\frac{1}{4}$,
解得,DE=$\frac{3}{4}$;
如图3,当BA=BD,DE∥AB时,
$\frac{DE}{AB}$=$\frac{CD}{CB}$,即$\frac{DE}{3}$=$\frac{2}{5}$,
解得,DE=$\frac{6}{5}$;
如图4,当EA=ED,DE∥AB时,
$\frac{DE}{AB}$=$\frac{CE}{CA}$,即$\frac{DE}{3}$=$\frac{4-DE}{4}$,
解得,DE=$\frac{12}{7}$;
如图5,当DE=BD,DE∥AB时,
$\frac{DE}{AB}$=$\frac{CD}{CB}$,即$\frac{DE}{3}$=$\frac{5-DE}{5}$,
解得,DE=$\frac{15}{8}$.
点评 本题考查的是新定义、相似三角形的判定和性质,正确理解准菱形的定义、灵活运用相似三角形的判定定理和性质定理是解题的关键,在解答时注意分情况讨论思想是灵活运用.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
分组 | 人数(频数) |
60-70 | 1 |
70-80 | 2 |
80-90 | 9 |
90-100 | 8 |
合计 | 20 |
项目 成绩 | 素描 | 色彩 | 速写 |
甲 | 98 | 93 | 95 |
乙 | 95 | 95 | 100 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1.25≤x<1.35 | B. | 1.295≤x<1.305 | C. | 1.25<x<1.35 | D. | 1.295<x<1.305 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com