精英家教网 > 初中数学 > 题目详情

在平面直角坐标系xOy中,△AOB的位置如图所示,已知∠AOB=90°,∠A=60°,点A的坐标为(数学公式,1).
求:(1)点B的坐标;
(2)图象经过A、O、B三点的二次函数的解析式和这个函数图象的顶点坐标.

解:(1)如图,过A作AC⊥OD于C,过B作BD⊥DO与D,
∵点A的坐标为(,1),
∴AO=2,
∵∠AOB=90°,∠BAO=60°,
∴tan∠BAO=
∴BO=2

∴∠AOC=30°,
∠BOD=60°,
∴点B的坐标为(,3);

(2)设这个二次函数的解析式为y=ax2+bx+c(a≠0),
∵二次函数的图象经过A、O、B三点,

解得:
所以二次函数的解析式为
∴函数图象的顶点坐标为().
分析:(1)如图,过A作AC⊥OD于C,过B作BD⊥DO与D,由于点A的坐标为(,1),利用勾股定理可以求出AO=2,然后在Rt△AOB中由于∠BAO=60°,利用三角函数即可求出BO,然后即可求出B的坐标;
(2)首先根据(1)的结论利用待定系数法即可求出二次函数的解析式和这个函数图象的顶点坐标.
点评:此题首先考查了解直角三角形的知识,接着考查了利用待定系数法确定二次函数的解析式,有一定的综合性.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

13、在平面直角坐标系xOy中,已知点A(2,-2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有
4
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c的对称轴是x=1,并且经过(-2,-5)和(5,-12)两点.
(1)求此抛物线的解析式;
(2)设此抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于C 点,D是线段BC上一点(不与点B、C重合),若以B、O、D为顶点的三角形与△BAC相似,求点D的坐标;
(3)点P在y轴上,点M在此抛物线上,若要使以点P、M、A、B为顶点的四边形是平行四边形,请你直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.
(1)求此抛物线的函数表达式;
(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为7
2
?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知A(2,-2),B(0,-2),在坐标平面中确定点P,使△AOP与△AOB相似,则符合条件的点P共有
5
5
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系xOy中,A(2,1)、B(4,1)、C(1,3).与△ABC与△ABD全等,则点D坐标为
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步练习册答案