【题目】抛物线交x轴于,,交y轴的负半轴于C,顶点为下列结论:;;当时,;当是等腰直角三角形时,则;当是等腰三角形时,a的值有3个其中正确的有 个.
A. 5 B. 4 C. 3 D. 2
【答案】C
【解析】
根据二次函数图象与系数的关系,二次函数与x轴交于点、,可知二次函数的对称轴为,即,可得2a与b的关系;将A、B两点代入可得c、b的关系;函数开口向下,时取得最小值,则,可判断;根据图象,顶点坐标,判断;由图象知,从而可以判断.
二次函数与x轴交于点、.
二次函数的对称轴为,即,
.
故正确;
二次函数与x轴交于点、.
,.
又.
,.
,.
.
故错误;
抛物线开口向上,对称轴是.
时,二次函数有最小值.
时,.
即.
故正确;
,,是等腰直角三角形.
.
解得,.
设点D坐标为.
则.
解得.
点D在x轴下方.
点D为.
二次函数的顶点D为,过点.
设二次函数解析式为.
.
解得.
故正确;
由图象可得,.
故是等腰三角形时,a的值有2个故错误
故正确,错误.
故选C.
科目:初中数学 来源: 题型:
【题目】定义:如果三角形有一边上的中线长恰好等于这边的长,那么这个三角形叫“恰等三角形”,这条中线叫“恰等中线”.
(直角三角形中的“恰等中线”)
(1)如图1,在△ABC中,∠C=90°,AC=,BC=2,AM为△ABC的中线.求证:AM是“恰等中线”.
(等腰三角形中的“恰等中线”)
(2)已知,等腰△ABC是“恰等三角形”,AB=AC=20,求底边BC的平方.
(一般三角形中的“恰等中线”)
(3)如图2,若AM是△ABC的“恰等中线”,则BC2,AB2,AC2之间的数量关系为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在四边形ABCD中,∠A=∠B=∠C=∠D=90°,AB=CD=10,AD=BC=8,点P在射线BC上,将△ABP沿直线AP翻折至△AEP的位置(点B落在点E处),
(1)如图1,当点P是BC中点时,连接CE,求证:CE∥AP;
(2)如图2,当点E落在CD延长线上时,求BP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC和△CDE都是等边三角形,且A、C、E三点共线.AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:① AD=BE;② ∠AOB=60°;③AP=BQ; ④△PCQ是等边三角形;⑤PQ∥AE.其中正确结论的有( )个
A.5B.4C.3D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC和△CDE都是等边三角形,且A、C、E三点共线.AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:① AD=BE;② ∠AOB=60°;③AP=BQ; ④△PCQ是等边三角形;⑤PQ∥AE.其中正确结论的有( )个
A.5B.4C.3D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线与x轴交于点A,与双曲线的一个交点为B(-1,4).
(1)求直线与双曲线的表达式;
(2)过点B作BC⊥x轴于点C,若点P在双曲线上,且△PAC的面积为4,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场柜台销售每台进价分别为160元、120元的、两种型号的电器,下表是近两周的销售情况:
销售时段 | 销售数量 | 销售收入 | |
种型号 | 种型号 | ||
第一周 | 3台 | 4台 | 1200元 |
第二周 | 5台 | 6台 | 1900元 |
(进价、售价均保持不变,利润=销售收入—进货成本)
(1)求、两种型号的电器的销售单价;
(2)若商场准备用不多于7500元的金额再采购这两种型号的电器共50台,求种型号的电器最多能采购多少台?
(3)在(2)中商场用不多于7500元采购这两种型号的电器共50台的条件下,商场销售完这50台电器能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,△ABC的位置如图所示.
(1)分别写出△ABC各个顶点的坐标;
(2)分别写出顶点A关于x轴对称的点A′的坐标、顶点B关于y轴对称的点B′的坐标及顶点C关于原点对称的点C′的坐标;
(3)求线段BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度(单位:)与足球被踢出后经过的时间(单位:)之间的关系如下表:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | … | |
0 | 8 | 14 | 18 | 20 | 20 | 18 | 14 | … |
下列结论:①足球距离地面的最大高度为;②足球飞行路线的对称轴是直线;③足球被踢出时落地;④足球被踢出时,距离地面的高度是.
其中正确结论的个数是( )
A.1 B.2 C.3 D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com