精英家教网 > 初中数学 > 题目详情
如图是规格为8×8的正方形网格,请在所给网格中按下列要求操作:
(1)请在网格中建立平面直角坐标系,使A点坐标为(-2,4),B点坐标为(-4,2);
(2)在第二象限内的格点上画一点C,使点C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,则C点坐标是______,△ABC的周长是______
【答案】分析:根据A点的坐标,首先确定坐标系的位置,在第二象限内的格点上画一点C,使点C与线段AB组成一个以AB为底的等腰三角形,则C一定在AB的中垂线上,通过作图即可确定C的位置,根据勾股定理即可求得三角形的周长,根据对角线的关系即可判定四边形的形状.本
解答:解:(1)图形如右.

(2)图见上,C(-1,1),△ABC的周长是2+2

(3)由旋转180°可知,BC=CB′,AC=CA′,
∴四边形ABA′B′是平行四边形,
又∵AA′=BB′,
∴四边形ABA′B′是矩形.
点评:本题考查了在格点上找等腰三角形的顶点,旋转变换作图,根据旋转中心画图,确定旋转后的点的坐标时,要抓住“动”与“不动”,看图是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图是规格为8×8的正方形网格,请在所给网格中按下列要求操作:
(1)请在网格中建立平面直角坐标系,使A点坐标为(-2,4),B点坐标为(-4,2);
(2)在第二象限内的格点上画一点C,使点C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,则C点坐标是
 
,△ABC的周长是
 
(结果保留根号);
(3)画出△ABC以点C为旋转中心,旋转180°后的△A′B′C,连接AB′和A′B,试说出四边形ABA′B′是何特殊四边形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图是规格为8×8的正方形网格(网格小正方形的边长为1),请在所给网格中按下列要求精英家教网操作:
(1)请在网格中建立平面直角坐标系,使A点坐标为(-2,3),B点坐标为(-4,1);
(2)在第二象限内的格点上画一点C,使点C与线段AB围成一个直角三角形(不是等腰直角三角形),则C点坐标是
 
,△ABC的面积是
 

(3)将(2)中画出△ABC以点C为旋转中心,逆时针旋转90°后得△A′B′C.求经过B、C、B′三点的抛物线的解析式;并判断抛物线是否经过8×8正方形网格的格点(不包括点B、C、B′),若经过,请你直接写出点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图是规格为8×8的正方形网格(小正方形的边长为1,小正方形的顶点叫格点),请在所给网格中按下列要求操作:
(1)请在网格中建立平面直角坐标系,使A点坐标为(-2,4),B点坐标为(-4,2);
(2)按(1)中的直角坐标系在第二象限内的格点上找点C(C点的横坐标大于-3),使点C与线段AB组成一个以AB为底的等腰三角形,则C点坐标是
 
,△ABC的面积是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图是规格为8×8的正方形网格(小正方形的边长为1,小正方形的顶点叫格点),在网格中建立平面直角坐标系,使A点坐标为(-2,4),B点坐标为(-4,2);在第二象限内的格点上找点C(C点的横坐标大于-3),使点C与线段AB组成一个以AB为底的等腰三角形,则C点坐标是
(-2,2)或(-1,1)
(-2,2)或(-1,1)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图是规格为8×8的正方形网格,请在网格中按下列要求操作:
(1)在第二象限内的格点上画一点C,使点C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,并求出腰长;
(2)画出△ABC绕点C旋转180°后得到的△A′B′C;连接AB′和A′B,试说明四边形ABA′B′是矩形.精英家教网

查看答案和解析>>

同步练习册答案