精英家教网 > 初中数学 > 题目详情

如图,正方形OEFG绕着正方形ABCD的对角线的交点O旋转,边OE、OG分别交边AD、AB于点M、N.
(1)求证:OM=ON;
(2)设正方形OEFG的对角线OF与边AB相交于点P,连接PM.若正方形ABCD的边长为12,且PM=5,试求AM的长.

(1)∵O为正方形ABCD的对角线的交点,
∴∠OAM=∠OBN=45°,OA=OB,∠AOB=90°.(1分)
又∵∠EOG=90°,
∴∠EOG-∠AON=∠AOB-∠AON,即∠AOM=∠BON.(2分)
在△AOM和△BON中,
∵∠OAM=∠OBN,OA=OB,∠AOM=∠BON,
∴△AOM≌△BON.(ASA)(3分)
∴OM=ON.(4分)

(2)∵OF为正方形OEFG的对角线,
∴∠POM=∠PON=45°.
又∵OM=ON,OP=OP,
∴△POM≌△PON.(SAS)(5分)
∴PM=PN.
又∵PM=5,
∴PN=5.(6分)
∵△AOM≌△BON,
∴BN=AM.(7分)
设AM=x,则AP=AB-PN-BN=12-5-x=7-x.(8分)
在Rt△AMP中,
∵AM2+AP2=PM2
∴x2+(7-x)2=25.(9分)
化简得x2-7x+12=0.
解这个方程得x1=3,x2=4.
∴AM的长为3或4.(10分)
分析:(1)利用旋转的性质得到∠OAM=∠OBN,OA=OB,∠AOM=∠BON,从而证明△AOM≌△BON,问题得证;
(2)利用上题证得的全等三角形可以得到BN=AM,设AM=x,然后表示出AP,在直角三角形AMP中利用勾股定理列出方程求解即可.
点评:本题考查了旋转的性质,解决此类问题的关键是正确的利用旋转不变量.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,正方形OEFG和正方形ABCD是位似形,点F的坐标为(1,1),点C的坐标为(4,2),则这两个正方形位似中心的坐标是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

29、如图,正方形OEFG绕着正方形ABCD的对角线的交点O旋转,边OE、OG分别交边AD、AB于点M、N.
(1)求证:OM=ON;
(2)设正方形OEFG的对角线OF与边AB相交于点P,连接PM.若正方形ABCD的边长为12,且PM=5,试求AM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形OEFG和正方形ABCD是位似图形,且点F与点C是一对对应点,点F的坐标是(1,1),点C的坐标是(4,2);则它们的位似中心的坐标是(  )
A、(0,0)B、(-1,0)C、(-2,0)D、(-3,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•安庆二模)如图,正方形OEFG和正方形ABCD的是位似图形,若点A的坐标为(2,2),位似中心的坐标是(-4,0),则点F的坐标为
4
3
4
3
4
3
4
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形OEFG绕着正方形ABCD的对角线的交点O旋转,边OE、OG分别交边AD、AB于点M、N.
(1)求证:OM=ON;
(2)设正方形ABCD的边长为a,求证:四边形OMAN的面积是定值.

查看答案和解析>>

同步练习册答案