精英家教网 > 初中数学 > 题目详情
(2012•舟山)如图,A、B两点在河的两岸,要测量这两点之间的距离,测量者在与A同侧的河岸边选定一点C,测出AC=a米,∠A=90°,∠C=40°,则AB等于(  )米.
分析:直接根据锐角三角函数的定义进行解答即可.
解答:解:∵△ABC中,AC=a米,∠A=90°,∠C=40°,
∴tan∠C=tan40°=
AB
AC

∴AB=atan40°.
故选C.
点评:本题考查的是解直角三角形的应用及锐角三角函数的定义,熟知锐角三角函数的定义是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•舟山)如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.
(1)求证:BD=EC;
(2)若∠E=50°,求∠BAO的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•舟山)如图,已知△ABC中,∠CAB=∠B=30°,AB=2
3
,点D在BC边上,把△ABC沿AD翻折使AB与AC重合,得△AB′D,则△ABC与△AB′D重叠部分的面积为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•舟山)如图,已知⊙O的半径为2,弦AB⊥半径OC,沿AB将弓形ACB翻折,使点C与圆心O重合,则月牙形(图中实线围成的部分)的面积是
4
3
π+2
3
4
3
π+2
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•舟山)如图,在Rt△ABC中,AB=BC,∠ABC=90°,点D是AB的中点,连接CD,过点B作BG⊥CD,分别交CD,CA于点E,F,与过点A且垂直于AB的直线相交于点G,连接DF,给出以下五个结论:
AG
AB
=
FG
FB
;②∠ADF=∠CDB;③点F是GE的中点;④AF=
2
3
AB;⑤S△ABC=5S△BDF
其中正确结论的序号是
①②④
①②④

查看答案和解析>>

同步练习册答案