精英家教网 > 初中数学 > 题目详情

如图,已知C是线段AB的中点,D是线段AC的中点,E是线段BC的中点.
(1)若AB=18cm,求DE的长;
(2)若CE=5cm,求DB的长.

解:(1)∵C是AB的中点,
∴AC=BC=AB=9(cm) …
∵D是AC的中点,
∴AD=DC=AC=(cm)
∵E是BC的中点,
∴CE=BE=BC=(cm) …
又∵DE=DC+CE,
∴DE=+=9(cm) …
(2)由(1)知:AD=DC=CE=EB,
∴CE=BD
∵CE=5cm,
∴BD=15(cm) …
分析:(1)先由C是线段AB的中点求出AC和BC,再由D是线段AC的中点,E是线段BC的中点.求出DC和CE,从而求出DE的长;
(2)首先由(1)得出CE和BD的关系,然后求出BD的长.
点评:此题考查的知识点是两点间的距离,利用中点性质转化线段之间的倍分关系是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知B是线段AE上一点,ABCD和BEFG都是正方形,连接AG、CE.
(1)求证:AG=CE;
(2)设CE与GF的交点为P,求证:
PG
CG
=
PE
AG

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知CD是线段AB的垂直平分线,垂足为D,E是CD上一点.若∠A=60°,则下列结论中错误的是(  )
A、AE=BEB、AD=BDC、AB=ACD、ED=AD

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知C是线段AB的中点,则CD等于(  )
精英家教网
A、AD-BD
B、
1
2
(AD-BD)
C、
1
2
AB-BD
D、AD-
1
2
AB

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•宿迁)如图,已知P是线段AB的黄金分割点,且PA>PB,若S1表示PA为一边的正方形的面积,S2表示长是AB,宽是PB的矩形的面积,则S1
=
=
S2.(填“>”“=”或“<”)

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图①,已知C是线段AB上一点,分别以AC、BC为边长在AB的同侧作等边△ADC与等边△CBE,试猜想AE与DB的大小关系,并证明.
(2)如图②,当等边△CBE绕点C旋转后,上述结论是否仍成立?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案