精英家教网 > 初中数学 > 题目详情
10.如图,已知点A(8,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=6时,这两个二次函数的最大值之和等于(  )
A.5B.$\frac{{8\sqrt{5}}}{3}$C.10D.$2\sqrt{5}$

分析 过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,则BF+CM是这两个二次函数的最大值之和,BF∥DE∥CM,求出AE=OE=4,DE=2$\sqrt{5}$,设P(2x,0),根据二次函数的对称性得出OF=PF=x,推出△OBF∽△ODE,△ACM∽△ADE,得出$\frac{BF}{DE}$=$\frac{OF}{OE}$,$\frac{CM}{DE}$=$\frac{AM}{AE}$,代入求出BF和CM,相加即可求出答案.

解答 解:过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,
∵BF⊥OA,DE⊥OA,CM⊥OA,
∴BF∥DE∥CM,
∵OD=AD=6,DE⊥OA,
∴OE=EA=$\frac{1}{2}$OA=4,
由勾股定理得:DE=$\sqrt{O{D}^{2}-O{E}^{2}}$=2$\sqrt{5}$,
设P(2x,0),根据二次函数的对称性得出OF=PF=x,
∵BF∥DE∥CM,
∴△OBF∽△ODE,△ACM∽△ADE,
∴$\frac{BF}{DE}$=$\frac{OF}{OE}$,$\frac{CM}{DE}$=$\frac{AM}{AE}$,
∵AM=PM=$\frac{1}{2}$(OA-OP)=$\frac{1}{2}$(8-2x)=4-x,
即$\frac{BF}{2\sqrt{5}}$=$\frac{x}{4}$,$\frac{CM}{2\sqrt{5}}$=$\frac{4-x}{4}$,
解得:BF=$\frac{\sqrt{5}}{2}$x,CM=2$\sqrt{5}$-$\frac{\sqrt{5}}{2}$x,
∴BF+CM=2$\sqrt{5}$.

点评 此题考查了二次函数的最值,勾股定理,等腰三角形性质,以及相似三角形的性质和判定的应用,题目比较好,但是有一定的难度,属于综合性试题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.先化简,再求值:$\frac{2}{a+1}-\frac{a-2}{{{a^2}-1}}+\frac{{{a^2}-2a}}{{{a^2}-2a+1}}$,其中a=cos45°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,已知D是△ABC边BC延长线上一点,DF⊥AB于点F,交AC于点E,∠A=35°,∠D=42°,求(1)∠ACD的度数; (2)∠AEF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图1,在Rt△ACB中,∠BAC=90°,AB=AC,分别过B、C两点作过点A的直线l的垂线,垂足为D、E;

(1)如图1,当D、E两点在直线BC的同侧时,猜想,BD、CE、DE三条线段有怎样的数量关系?并说明理由.
(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)如图3,∠BAC=90°,AB=22,AC=28.点P从B点出发沿B→A→C路径向终点C运动;点Q从C点出发沿C→A→B路径向终点B运动.点P和Q分别以每秒2和3个单位的速度同时开始运动,只要有一点到达相应的终点时两点同时停止运动;在运动过程中,分别过P和Q作PF⊥l于F,QG⊥l于G.问:点P运动多少秒时,△PFA与△QAG全等?(直接写出结果即可)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.下列美丽的图案中,是中心对称图形的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.在△ABC中,D是边BC上一点,且∠ABD=∠C.
(1)求证:△ABC∽△ADB;
(2)若AB=10,AC=20,∠DBC=90°,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,△ABC中,AD平分∠BAC,AD的垂直平分线FE交BC的延长线于E,求证:DE2=BE•CE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知二次函数y=-x2-2x+3.
(1)求它的顶点坐标和对称轴;
(2)求它与坐标轴的交点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.观察下列等式:
①22-1×3=4-3=1;②32-2×4=9-8=1;③42-3×5=16-15=1;④52-4×6=25-24=1;…
(1)请你按以上规律写出第4个算式;
(2)把这个规律用含字母的式子表示出来;
(3)你认为(2)中所写出的式子一定成立吗?请说明理由.

查看答案和解析>>

同步练习册答案